Page 77 - AIH-1-4
P. 77

Artificial Intelligence in Health                                     ML models for heartbeat classification



               Biocybernetics Biomed Eng. 2021;41(2):474-502.     Rebouças  Filho  PP,  de  Albuquerque  VHC.  A  novel
                                                                  electrocardiogram feature extraction approach for cardiac
               doi: 10.1016/j.bbe.2021.02.007
                                                                  arrhythmia classification.  Future Generation Comput Syst.
            6.   Acharya UR, Oh SL, Hagiwara Y, et al. A deep convolutional   2019;97:564-577.
               neural network model to classify heartbeats. Comput Biol
               Med. 2017;89:389-396.                              doi: 10.1016/j.future.2019.03.025
                                                               17.  Irfan S, Anjum N, Althobaiti T, Alotaibi AA, Siddiqui AB,
               doi: 10.1016/j.compbiomed.2017.08.022
                                                                  Ramzan N. Heartbeat classification and arrhythmia
            7.   Luz EJS, Schwartz WR, Cámara-Chávez G, Menotti D. ECG-  detection using a multi-model deep-learning technique.
               based heartbeat classification for arrhythmia detection:   Sensors (Basel). 2022;22(15):5606.
               A survey. Comput Methods Programs Biomed. 2016;127:144-164.
                                                                  doi: 10.3390/s22155606
               doi: 10.1016/j.cmpb.2015.12.008
                                                               18.  Ahmad Z, Tabassum A, Guan L, Khan NM. ECG heartbeat
            8.   Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY.   classification using multimodal fusion.  IEEE Access.
               Cardiologist-level arrhythmia detection with convolutional   2021;9:100615-100626.
               neural networks. arXiv preprint arXiv:170701836; 2017.
                                                                  doi: 10.1109/ACCESS.2021.3097614
               doi: 10.48550/arXiv.1707.01836
                                                               19.  Wu X, Zheng Y, Chu CH, He Z. Extracting deep features
            9.   Krasteva  V,  Jekova  I,  Leber  R,  Schmid  R,  Abächerli  R.   from short ECG signals for early atrial fibrillation detection.
               Superiority  of  classification  tree  versus  cluster,  fuzzy  and   Artif Intell Med. 2020;109:101896.
               discriminant models in  a heartbeat  classification  system.      doi: 10.1016/j.artmed.2020.101896
               PLoS One. 2015;10(10):e0140123.
                                                               20.  Müller KR, Mika S, Tsuda K, Schölkopf K. An introduction
               doi: 10.1371/journal.pone.0140123
                                                                  to kernel-based learning algorithms. In: Handbook of Neural
            10.  Syama S, Sweta GS, Kavyasree P, Reddy KJM. Classification   Network Signal Processing. United States: CRC Press; 2018.
               of ECG Signal using Machine Learning Techniques. In:   p. 4-1-4-40.
               2019 2  International Conference on Power and Embedded
                    nd
               Drive Control (ICPEDC): IEEE; 2019. p. 122-128.     doi: 10.1201/9781315220413-4
                                                               21.  Rahmani AM, Yousefpoor E, Yousefpoor MS, et al. Machine
               doi: 10.1109/ICPEDC47771.2019.9036613
                                                                  learning (ML) in medicine: Review, applications, and
            11.  Jambukia  SH,  Dabhi  VK,  Prajapati  HB.  Classification  of   challenges. Mathematics. 2021;9(22):2970.
               ECG Signals Using Machine Learning Techniques: A Survey.      doi: 10.3390/math9222970
               In: 2015 International Conference on Advances in Computer
               Engineering and Applications: IEEE; 2015. p. 714-721.  22.  Zdravevski E, Lameski P, Trajkovik V,  et  al. Improving
                                                                  activity recognition accuracy in ambient-assisted living
               doi: 10.1109/ICACEA.2015.7164783
                                                                  systems by automated feature engineering.  IEEE Access.
            12.  Xue J, Yu L. Applications of machine learning in ambulatory   2017;5:5262-5280.
               ECG. Hearts. 2021;2(4):472-494.
                                                                  doi: 10.1109/ACCESS.2017.2684913
               doi: 10.3390/hearts2040037
                                                               23.  Mushtaq S, Faizi N, Amin SS, Adil M, Mohtashim M. Impact
            13.  Zulfiqar R, Majeed F, Irfan R, Rauf HT, Benkhelifa E,   on quality of life in patients with dermatophytosis. Australas
               Belkacem AN. Abnormal respiratory sounds classification   J Dermatol. 2020;61(2):e184-e188.
               using deep CNN through artificial noise addition.  Front      doi: 10.1111/ajd.13191
               Med (Lausanne). 2021;8:714811.
                                                               24.  Sari BG, Lúcio  ADC, Santana CS, Krysczun DK,
               doi: 10.3389/fmed.2021.714811
                                                                  Tischler  AL, Drebes L. Sample size for estimation of the
            14.  Liu  S,  Shao  J,  Kong  T,  Malekian  R.  ECG  arrhythmia   Pearson correlation coefficient in cherry tomato tests. Ciên
               classification using high order spectrum and 2D  graph   Rural. 2017;47:e20170116.
               Fourier transform. Appl Sci. 2020;10(14):4741.
                                                                  doi: 10.1590/0103-8478cr20170116
               doi: 10.3390/app10144741
                                                               25.  Villavicencio  CN,  Macrohon  JJ,  Inbaraj  XA,  Jeng  JH,
            15.  Bhattacharyya S,  Majumder S, Debnath P, Chanda M.   Hsieh JG. Development of a machine learning based web
               Arrhythmic  heartbeat  classification  using  ensemble  of   application  for  early  diagnosis  of  COVID-19  based  on
               random forest and support vector machine algorithm. IEEE   symptoms. Diagnostics (Basel). 2022;12(4):821.
               Trans Artif Intell. 2021;2(3):260-268.
                                                                  doi: 10.3390/diagnostics12040821
               doi: 10.1109/TAI.2021.3083689
                                                               26.  George A, Stead TS, Ganti L. What’s the risk: Differentiating
            16.  Marinho LB, Nascimento NMM, Souza JWM, Gurgel MV,   risk ratios, odds ratios, and hazard ratios?  Cureus.


            Volume 1 Issue 4 (2024)                         71                               doi: 10.36922/aih.3543
   72   73   74   75   76   77   78   79   80   81   82