Page 77 - AIH-1-4
P. 77
Artificial Intelligence in Health ML models for heartbeat classification
Biocybernetics Biomed Eng. 2021;41(2):474-502. Rebouças Filho PP, de Albuquerque VHC. A novel
electrocardiogram feature extraction approach for cardiac
doi: 10.1016/j.bbe.2021.02.007
arrhythmia classification. Future Generation Comput Syst.
6. Acharya UR, Oh SL, Hagiwara Y, et al. A deep convolutional 2019;97:564-577.
neural network model to classify heartbeats. Comput Biol
Med. 2017;89:389-396. doi: 10.1016/j.future.2019.03.025
17. Irfan S, Anjum N, Althobaiti T, Alotaibi AA, Siddiqui AB,
doi: 10.1016/j.compbiomed.2017.08.022
Ramzan N. Heartbeat classification and arrhythmia
7. Luz EJS, Schwartz WR, Cámara-Chávez G, Menotti D. ECG- detection using a multi-model deep-learning technique.
based heartbeat classification for arrhythmia detection: Sensors (Basel). 2022;22(15):5606.
A survey. Comput Methods Programs Biomed. 2016;127:144-164.
doi: 10.3390/s22155606
doi: 10.1016/j.cmpb.2015.12.008
18. Ahmad Z, Tabassum A, Guan L, Khan NM. ECG heartbeat
8. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. classification using multimodal fusion. IEEE Access.
Cardiologist-level arrhythmia detection with convolutional 2021;9:100615-100626.
neural networks. arXiv preprint arXiv:170701836; 2017.
doi: 10.1109/ACCESS.2021.3097614
doi: 10.48550/arXiv.1707.01836
19. Wu X, Zheng Y, Chu CH, He Z. Extracting deep features
9. Krasteva V, Jekova I, Leber R, Schmid R, Abächerli R. from short ECG signals for early atrial fibrillation detection.
Superiority of classification tree versus cluster, fuzzy and Artif Intell Med. 2020;109:101896.
discriminant models in a heartbeat classification system. doi: 10.1016/j.artmed.2020.101896
PLoS One. 2015;10(10):e0140123.
20. Müller KR, Mika S, Tsuda K, Schölkopf K. An introduction
doi: 10.1371/journal.pone.0140123
to kernel-based learning algorithms. In: Handbook of Neural
10. Syama S, Sweta GS, Kavyasree P, Reddy KJM. Classification Network Signal Processing. United States: CRC Press; 2018.
of ECG Signal using Machine Learning Techniques. In: p. 4-1-4-40.
2019 2 International Conference on Power and Embedded
nd
Drive Control (ICPEDC): IEEE; 2019. p. 122-128. doi: 10.1201/9781315220413-4
21. Rahmani AM, Yousefpoor E, Yousefpoor MS, et al. Machine
doi: 10.1109/ICPEDC47771.2019.9036613
learning (ML) in medicine: Review, applications, and
11. Jambukia SH, Dabhi VK, Prajapati HB. Classification of challenges. Mathematics. 2021;9(22):2970.
ECG Signals Using Machine Learning Techniques: A Survey. doi: 10.3390/math9222970
In: 2015 International Conference on Advances in Computer
Engineering and Applications: IEEE; 2015. p. 714-721. 22. Zdravevski E, Lameski P, Trajkovik V, et al. Improving
activity recognition accuracy in ambient-assisted living
doi: 10.1109/ICACEA.2015.7164783
systems by automated feature engineering. IEEE Access.
12. Xue J, Yu L. Applications of machine learning in ambulatory 2017;5:5262-5280.
ECG. Hearts. 2021;2(4):472-494.
doi: 10.1109/ACCESS.2017.2684913
doi: 10.3390/hearts2040037
23. Mushtaq S, Faizi N, Amin SS, Adil M, Mohtashim M. Impact
13. Zulfiqar R, Majeed F, Irfan R, Rauf HT, Benkhelifa E, on quality of life in patients with dermatophytosis. Australas
Belkacem AN. Abnormal respiratory sounds classification J Dermatol. 2020;61(2):e184-e188.
using deep CNN through artificial noise addition. Front doi: 10.1111/ajd.13191
Med (Lausanne). 2021;8:714811.
24. Sari BG, Lúcio ADC, Santana CS, Krysczun DK,
doi: 10.3389/fmed.2021.714811
Tischler AL, Drebes L. Sample size for estimation of the
14. Liu S, Shao J, Kong T, Malekian R. ECG arrhythmia Pearson correlation coefficient in cherry tomato tests. Ciên
classification using high order spectrum and 2D graph Rural. 2017;47:e20170116.
Fourier transform. Appl Sci. 2020;10(14):4741.
doi: 10.1590/0103-8478cr20170116
doi: 10.3390/app10144741
25. Villavicencio CN, Macrohon JJ, Inbaraj XA, Jeng JH,
15. Bhattacharyya S, Majumder S, Debnath P, Chanda M. Hsieh JG. Development of a machine learning based web
Arrhythmic heartbeat classification using ensemble of application for early diagnosis of COVID-19 based on
random forest and support vector machine algorithm. IEEE symptoms. Diagnostics (Basel). 2022;12(4):821.
Trans Artif Intell. 2021;2(3):260-268.
doi: 10.3390/diagnostics12040821
doi: 10.1109/TAI.2021.3083689
26. George A, Stead TS, Ganti L. What’s the risk: Differentiating
16. Marinho LB, Nascimento NMM, Souza JWM, Gurgel MV, risk ratios, odds ratios, and hazard ratios? Cureus.
Volume 1 Issue 4 (2024) 71 doi: 10.36922/aih.3543

