Page 78 - AIH-1-4
P. 78

Artificial Intelligence in Health                                     ML models for heartbeat classification



               2020;12(8):e10047.                                 Mining; 2016. p. 785-794.
               doi: 10.7759/cureus.10047                          doi: 10.1145/2939672.2939785
            27.  Ramlee N, Ismail N. Analysis COVID-19 death cases in   39.  Niyogisubizo  J,  Liao  L,  Nziyumva  E,  Murwanashyaka  E,
               pulau  pinang  using  multiple  linear  regression.  Proc Sci   Nshimyumukiza PC. Predicting student’s dropout in
               Math. 2022;8:102-108.                              university classes using two-layer ensemble machine
                                                                  learning approach: A novel stacked generalization. Comput
            28.  Sabiri B, Asri B El, Rhanoui M. Mechanism of overfitting   Educ Artif Intell. 2022;3:100066.
               avoidance techniques for training deep neural networks[J/
               OL]. In Proceedings of the 24  International Conference on      doi: 10.1016/j.caeai.2022.100066
                                     th
               Enterprise Information Systems. 2022;1:418-427.  40.  Jin Y, Biscontin G, Gardoni P. A Bayesian definition of “most
            29.  Nair V, Chatterjee M, Tavakoli N, Namin AS, Snoeyink C.   probable” parameters. Geotechnical Res. 2018;5(3):130-142.
               Fast Fourier transformation for optimizing convolutional      doi: 10.1680/jgere.18.00027
               neural networks in object recognition. 2020.
                                                               41.  Houlsby  N,  Houlsby  G.  Statistical  fitting  of  undrained
               doi: 10.48550/arXiv.2010.04257                     strength data. Géotechnique. 2013;63(14):1253-1263.
            30.  Chughtai  BR,  Jalal  A.  Traffic  Surveillance  System:  Robust   doi: 10.1680/geot.13.P.007
               Multiclass  Vehicle Detection and Classification. In:
               2024  5   International Conference on Advancements in   42.  Niyogisubizo  J,  Liao  L,  Zou  F,  et al. Predicting traffic crash
                     th
               Computational Sciences (ICACS): IEEE; 2024. p. 1-8.  severity using hybrid of balanced bagging classification and light
                                                                  gradient boosting machine. Intell Data Anal. 2023;27(1):79-101.
               doi: 10.1109/ICACS60934.2024.10473304
                                                                  doi: 10.3233/IDA-216398
            31.  Pathirana  VK.  Nearest  Neighbor  Foreign  Exchange  Rate
               Forecasting with Mahalanobis Distance. Graduate Theses and   43.  Powers DM. Evaluation: From precision, recall and
               Dissertations; 2015.                               F-measure to ROC, informedness, markedness and
                                                                  correlation. arXiv preprint arXiv:201016061; 2020.
            32.  Mucherino  A,  Papajorgji  PJ,  Pardalos  PM.  K-nearest
               neighbor  classification.  In:  Data Mining in Agriculture.   doi: 10.48550/arXiv.2010.16061
               Berlin: Springer; 2009. p. 83-106.              44.  Arbateni K, Benzaoui A. Enhancing heartbeat classification
               doi: 10.1007/978-0-387-88615-2_4                   through cascading next generation and conventional
                                                                  reservoir computing. Appl Sci. 2024;14(7):3030.
            33.  James G, Witten D, Hastie T, Tibshirani R. Linear regression.
               In: An Introduction to Statistical Learning. Berlin: Springer;      doi: 10.3390/app14073030
               2013. p. 59-126.                                45.  Zhou F, Fang D. Multimodal ECG heartbeat classification
               doi: 10.1007/978-1-4614-7138-7_3                   method based on a convolutional neural network embedded
                                                                  with FCA. Sci Rep. 2024;14(1):8804.
            34.  Fox EW, Hill RA, Leibowitz SG, Olsen AR, Thornbrugh DJ,
               Weber MH. Assessing the accuracy and stability of variable      doi: 10.1038/s41598-024-59311-0
               selection methods for random forest modeling in ecology.   46.  Subba T, Chingtham T. Comparative analysis of machine
               Environ Monit Assess. 2017;189:316.                learning  algorithms with  advanced feature extraction  for
               doi: 10.1007/s10661-017-6025-0                     ECG signal classification. IEEE Access. 2024;12:57727-57740.
            35.  Shafiq M, Tian Z, Bashir AK, Jolfaei A, Yu X. Data mining and      doi: 10.1109/ACCESS.2024.3387041
               machine learning methods for sustainable smart cities traffic   47.  Gao J, Zhang H, Lu P, Wang Z. An effective LSTM recurrent
               classification: A survey. Sustain Cities Soc. 2020;60:102177.  network to detect arrhythmia on imbalanced ECG dataset.
               doi: 10.1016/j.scs.2020.102177                     J Healthc Eng. 2019;2019(1):6320651.
            36.  Jiawei Han M, Pei J. Data Mining: Concepts and Techniques.      doi: 10.1155/2019/6320651
               Amsterdam: Elsevier; 2011.                      48.  Chen TM, Huang CH, Shih ES, Hu YF, Hwang MJ. Detection
            37.  Cervantes  J,  Garcia-Lamont  F,  Rodríguez-Mazahua  L,   and classification of cardiac arrhythmias by a challenge-
               Lopez A. A  comprehensive survey on support vector   best deep learning neural network model.  iScience.
               machine classification: Applications, challenges and trends.   2020;23(3):100886.
               Neurocomputing. 2020;408:189-215.                  doi: 10.1016/j.isci.2020.100886
               doi: 10.1016/j.neucom.2019.10.118               49.  Sun L, Wang Y, Qu Z, Xiong NN. BeatClass: A sustainable
                                                                  ECG classification system in IoT-based eHealth.  IEEE
            38.  Chen T, Guestrin C. XGBoost: A  scalable tree boosting
               system. In:  Proceedings of the 22   ACM SIGKDD    Internet Things J. 2021;9(10):7178-7195.
                                            nd
               International Conference on Knowledge Discovery and Data      doi: 10.1109/JIOT.2021.3108792

            Volume 1 Issue 4 (2024)                         72                               doi: 10.36922/aih.3543
   73   74   75   76   77   78   79   80   81   82   83