Page 78 - AIH-1-4
P. 78
Artificial Intelligence in Health ML models for heartbeat classification
2020;12(8):e10047. Mining; 2016. p. 785-794.
doi: 10.7759/cureus.10047 doi: 10.1145/2939672.2939785
27. Ramlee N, Ismail N. Analysis COVID-19 death cases in 39. Niyogisubizo J, Liao L, Nziyumva E, Murwanashyaka E,
pulau pinang using multiple linear regression. Proc Sci Nshimyumukiza PC. Predicting student’s dropout in
Math. 2022;8:102-108. university classes using two-layer ensemble machine
learning approach: A novel stacked generalization. Comput
28. Sabiri B, Asri B El, Rhanoui M. Mechanism of overfitting Educ Artif Intell. 2022;3:100066.
avoidance techniques for training deep neural networks[J/
OL]. In Proceedings of the 24 International Conference on doi: 10.1016/j.caeai.2022.100066
th
Enterprise Information Systems. 2022;1:418-427. 40. Jin Y, Biscontin G, Gardoni P. A Bayesian definition of “most
29. Nair V, Chatterjee M, Tavakoli N, Namin AS, Snoeyink C. probable” parameters. Geotechnical Res. 2018;5(3):130-142.
Fast Fourier transformation for optimizing convolutional doi: 10.1680/jgere.18.00027
neural networks in object recognition. 2020.
41. Houlsby N, Houlsby G. Statistical fitting of undrained
doi: 10.48550/arXiv.2010.04257 strength data. Géotechnique. 2013;63(14):1253-1263.
30. Chughtai BR, Jalal A. Traffic Surveillance System: Robust doi: 10.1680/geot.13.P.007
Multiclass Vehicle Detection and Classification. In:
2024 5 International Conference on Advancements in 42. Niyogisubizo J, Liao L, Zou F, et al. Predicting traffic crash
th
Computational Sciences (ICACS): IEEE; 2024. p. 1-8. severity using hybrid of balanced bagging classification and light
gradient boosting machine. Intell Data Anal. 2023;27(1):79-101.
doi: 10.1109/ICACS60934.2024.10473304
doi: 10.3233/IDA-216398
31. Pathirana VK. Nearest Neighbor Foreign Exchange Rate
Forecasting with Mahalanobis Distance. Graduate Theses and 43. Powers DM. Evaluation: From precision, recall and
Dissertations; 2015. F-measure to ROC, informedness, markedness and
correlation. arXiv preprint arXiv:201016061; 2020.
32. Mucherino A, Papajorgji PJ, Pardalos PM. K-nearest
neighbor classification. In: Data Mining in Agriculture. doi: 10.48550/arXiv.2010.16061
Berlin: Springer; 2009. p. 83-106. 44. Arbateni K, Benzaoui A. Enhancing heartbeat classification
doi: 10.1007/978-0-387-88615-2_4 through cascading next generation and conventional
reservoir computing. Appl Sci. 2024;14(7):3030.
33. James G, Witten D, Hastie T, Tibshirani R. Linear regression.
In: An Introduction to Statistical Learning. Berlin: Springer; doi: 10.3390/app14073030
2013. p. 59-126. 45. Zhou F, Fang D. Multimodal ECG heartbeat classification
doi: 10.1007/978-1-4614-7138-7_3 method based on a convolutional neural network embedded
with FCA. Sci Rep. 2024;14(1):8804.
34. Fox EW, Hill RA, Leibowitz SG, Olsen AR, Thornbrugh DJ,
Weber MH. Assessing the accuracy and stability of variable doi: 10.1038/s41598-024-59311-0
selection methods for random forest modeling in ecology. 46. Subba T, Chingtham T. Comparative analysis of machine
Environ Monit Assess. 2017;189:316. learning algorithms with advanced feature extraction for
doi: 10.1007/s10661-017-6025-0 ECG signal classification. IEEE Access. 2024;12:57727-57740.
35. Shafiq M, Tian Z, Bashir AK, Jolfaei A, Yu X. Data mining and doi: 10.1109/ACCESS.2024.3387041
machine learning methods for sustainable smart cities traffic 47. Gao J, Zhang H, Lu P, Wang Z. An effective LSTM recurrent
classification: A survey. Sustain Cities Soc. 2020;60:102177. network to detect arrhythmia on imbalanced ECG dataset.
doi: 10.1016/j.scs.2020.102177 J Healthc Eng. 2019;2019(1):6320651.
36. Jiawei Han M, Pei J. Data Mining: Concepts and Techniques. doi: 10.1155/2019/6320651
Amsterdam: Elsevier; 2011. 48. Chen TM, Huang CH, Shih ES, Hu YF, Hwang MJ. Detection
37. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, and classification of cardiac arrhythmias by a challenge-
Lopez A. A comprehensive survey on support vector best deep learning neural network model. iScience.
machine classification: Applications, challenges and trends. 2020;23(3):100886.
Neurocomputing. 2020;408:189-215. doi: 10.1016/j.isci.2020.100886
doi: 10.1016/j.neucom.2019.10.118 49. Sun L, Wang Y, Qu Z, Xiong NN. BeatClass: A sustainable
ECG classification system in IoT-based eHealth. IEEE
38. Chen T, Guestrin C. XGBoost: A scalable tree boosting
system. In: Proceedings of the 22 ACM SIGKDD Internet Things J. 2021;9(10):7178-7195.
nd
International Conference on Knowledge Discovery and Data doi: 10.1109/JIOT.2021.3108792
Volume 1 Issue 4 (2024) 72 doi: 10.36922/aih.3543

