Page 110 - AIH-2-1
P. 110
Artificial Intelligence in Health EBNA1 inhibitors against EBV in NPC
Gastaldello S, Masucci MG. The Epstein-Barr virus nuclear 38. Hall M, Guetlein M. BestFirst; 2019. Available from: https://
antigen-1 promotes genomic instability via induction weka.sourceforge.io/doc.dev/weka/attributeselection/
of reactive oxygen species. Proc Natl Acad Sci U S A. bestfirst.html [Last accessed on 2024 Nov 07].
2009;106(7):2313-2318.
39. Hall M. GreedyStepwise; 2019. Available from: https://
doi: 10.1073/pnas.0810619106 weka.sourceforge.io/doc.dev/weka/attributeselection/
32. Cao JY, Mansouri S, Frappier L. Changes in the greedystepwise.html [Last accessed on 2024 Nov 07].
nasopharyngeal carcinoma nuclear proteome induced by 40. Vujović Ž. Classification model evaluation metrics. Int J Adv
the EBNA1 protein of Epstein-Barr virus reveal potential Comput Sci Appl. 2021;12(6):599-606.
roles for EBNA1 in metastasis and oxidative stress responses.
J Virol. 2012;86(1):382-394. doi: 10.14569/IJACSA.2021.0120670
doi: 10.1128/JVI.05648-11 41. Ratner B. The correlation coefficient: Its values range
between +1/−1, or do they? Journal of Target Meas Anal
33. Gianti E, Messick TE, Lieberman PM, Zauhar RJ. Mark. 2009;17(2):139-142.
Computational analysis of EBNA1 “druggability” suggests
novel insights for Epstein-Barr virus inhibitor design. doi: 10.1057/jt.2009.5
J Comput Aided Mol Des. 2016;30(4):285-303. 42. Tatachar AV. Comparative assessment of regression models
doi: 10.1007/s10822-016-9899-y based on model evaluation metrics. Int J Innov Technol
Explor Eng. 2021;8(9):853-860.
34. Bouckaert RR, Frank E, Hall M. WEKA Manual for Version
3-9-1. Hamilton, New Zealand: University of Waikato; 2016. 43. Gill J, Moullet M, Martinsson A, et al. Evaluating the
p. 1-341. performance of machine-learning regression models
for pharmacokinetic drug-drug interactions. CPT
35. Holmes G, Donkin A, Witten IH. Weka: A Machine Learning Pharmacometrics Syst Pharmacol. 2023;12(1):122-134.
Workbench. In: Proceedings of ANZIIS’94-Australian New
Zealand Intelligent Information Systems Conference. IEEE; doi: 10.1002/psp4.12884
1994. p. 357-361. 44. Damodharan S, Reddy SV, Sarojamma B. WEKA
36. Kononenko I, Hong SJ. Attribute selection for modelling. models for rainfall data. Int J Emerg Technol Innovat Res.
Future Gener Comput Syst. 1997;13(2):181-195. 2022;9:C111-C119.
doi: 10.1016/S0167-739X(97)81974-7 45. Tropsha A, Gramatica P, Gombar VK. The importance
of being earnest: Validation is the absolute essential for
37. Hall MA. Correlation-based Feature Subset selection for
Machine Learning. Thesis Submitted in Partial Fulfilment of successful application and interpretation of QSPR models.
the Requirements of the Degree of Doctor of Philosophy at QSAR Comb Sci. 2003;22(1):69-77.
the University of Waikato; 1988. doi: 10.1002/qsar.200390007
Volume 2 Issue 1 (2025) 104 doi: 10.36922/aih.4375

