Page 110 - AIH-2-1
P. 110

Artificial Intelligence in Health                                     EBNA1 inhibitors against EBV in NPC



               Gastaldello S, Masucci MG. The Epstein-Barr virus nuclear   38.  Hall M, Guetlein M. BestFirst; 2019. Available from: https://
               antigen-1 promotes genomic instability via induction   weka.sourceforge.io/doc.dev/weka/attributeselection/
               of reactive oxygen species.  Proc Natl Acad Sci U S A.   bestfirst.html [Last accessed on 2024 Nov 07].
               2009;106(7):2313-2318.
                                                               39.  Hall  M.  GreedyStepwise;  2019. Available  from:  https://
               doi: 10.1073/pnas.0810619106                       weka.sourceforge.io/doc.dev/weka/attributeselection/
            32.  Cao JY, Mansouri S, Frappier L. Changes in the   greedystepwise.html [Last accessed on 2024 Nov 07].
               nasopharyngeal carcinoma nuclear proteome induced by   40.  Vujović Ž. Classification model evaluation metrics. Int J Adv
               the EBNA1 protein of Epstein-Barr virus reveal potential   Comput Sci Appl. 2021;12(6):599-606.
               roles for EBNA1 in metastasis and oxidative stress responses.
               J Virol. 2012;86(1):382-394.                       doi: 10.14569/IJACSA.2021.0120670
               doi: 10.1128/JVI.05648-11                       41.  Ratner  B.  The  correlation  coefficient:  Its  values  range
                                                                  between +1/−1, or do they?  Journal  of  Target  Meas  Anal
            33.  Gianti E, Messick TE, Lieberman PM, Zauhar RJ.   Mark. 2009;17(2):139-142.
               Computational analysis of EBNA1 “druggability” suggests
               novel insights for Epstein-Barr virus inhibitor design.      doi: 10.1057/jt.2009.5
               J Comput Aided Mol Des. 2016;30(4):285-303.     42.  Tatachar AV. Comparative assessment of regression models
               doi: 10.1007/s10822-016-9899-y                     based on model evaluation metrics.  Int  J  Innov  Technol
                                                                  Explor Eng. 2021;8(9):853-860.
            34.  Bouckaert RR, Frank E, Hall M. WEKA Manual for Version
               3-9-1. Hamilton, New Zealand: University of Waikato; 2016.   43.  Gill J, Moullet M, Martinsson A,  et al. Evaluating the
               p. 1-341.                                          performance of machine-learning regression models
                                                                  for  pharmacokinetic  drug-drug  interactions.  CPT
            35.  Holmes G, Donkin A, Witten IH. Weka: A Machine Learning   Pharmacometrics Syst Pharmacol. 2023;12(1):122-134.
               Workbench. In:  Proceedings of ANZIIS’94-Australian New
               Zealand Intelligent  Information  Systems Conference. IEEE;      doi: 10.1002/psp4.12884
               1994. p. 357-361.                               44.  Damodharan S, Reddy SV, Sarojamma B. WEKA
            36.  Kononenko I, Hong SJ. Attribute selection for modelling.   models  for  rainfall  data.  Int J Emerg Technol Innovat Res.
               Future Gener Comput Syst. 1997;13(2):181-195.      2022;9:C111-C119.
               doi: 10.1016/S0167-739X(97)81974-7              45.  Tropsha A, Gramatica P, Gombar VK. The importance
                                                                  of being earnest: Validation is the absolute essential for
            37.  Hall MA.  Correlation-based Feature Subset selection for
               Machine Learning. Thesis Submitted in Partial Fulfilment of   successful application and interpretation of QSPR models.
               the Requirements of the Degree of Doctor of Philosophy at   QSAR Comb Sci. 2003;22(1):69-77.
               the University of Waikato; 1988.                   doi: 10.1002/qsar.200390007

































            Volume 2 Issue 1 (2025)                        104                               doi: 10.36922/aih.4375
   105   106   107   108   109   110   111   112   113   114   115