Page 32 - AIH-2-1
P. 32

Artificial Intelligence in Health                          COVID-19 diagnosis: FPA, k-NN, and SVM classifiers



               Nucl Eng Technol. 2020;52(10):2313-2319.           2015;24(12):5854-5867.
               doi: 10.1016/j.net.2020.03.011                     doi: 10.1109/TIP.2015.2488902
            18.  Prabin A, Veerappan J. Automatic segmentation of lung CT   30.  Ali AM, Farag AA. Automatic Lung Segmentation of
               images by CC based region growing. J Theor Appl Inform   Volumetric Low-dose CT Scans Using Graph Cuts. In:
               Technol. 2014;68(1):63-69.                         International Symposium on Visual Computing; 2008.
                                                                  p. 258-267.
            19.  Avinash S, Manjunath K, Kumar SS. An Improved Image
               Processing Analysis for the Detection of Lung Cancer Using   31.  Bhuvaneswari P, Therese BA. Detection of cancer in lung
               Gabor Filters and Watershed Segmentation Technique. In:   with k-NN classification using genetic algorithm. Procedia
               IEEE International Conference on Inventive Computation   Mater Sci. 2015;10:433-440.
               Technologies; 2016.                                doi: 10.1016/j.mspro.2015.06.077
            20.  Kumar SL, Swathy M, Sathish S, Sivaraman J, Rajasekar  M.   32.  Filho DC, Silva AO, Paiva AC, Nunes RA, Gattass M. Computer-
               Identification of lung cancer cell using watershed   aided diagnosis system for lung nodules based on computed
               segmentation on CT images. Indian J Sci Technol. 2016;9:1-4.  tomography using shape analysis, a genetic algorithm, and
               doi: 10.17485/ijst/2016/v9i1/85765                 SVM. Med Biol Eng Comput. 2017;55:1129-1146.

            21.  Shojaii R, Alirezaie J, Babyn P. Automatic Lung Segmentation      doi: 10.1007/s11517-016-1577-7
               in CT Images Using Watershed Transform. In:  IEEE   33.  Herrmann P, Busana M, Cressoni M, et al. Using artificial
               International Conference on Image Processing; 2005.  intelligence for automatic segmentation of CT lung images
            22.  Nithila EE, Kumar SS. Segmentation of lung from CT   in acute respiratory distress syndrome.  Front Physiol.
               using various active contour models. Biomed Signal Process   2021;12:76118.
               Control. 2019;47:57-62.                            doi: 10.3389/fphys.2021.676118
            23.  Kasinathan G, Jayakumar S, Gandomi AH, et al. Automated   34.  Shi F, Wang J, Shi J,  et al. Review of artificial intelligence
               3-D lung tumor detection and classification by an active   techniques in imaging data acquisition, segmentation, and
               contour model and CNN classifier.  Expert Syst Appl.   diagnosis for COVID-19. IEEE Rev Biomed Eng. 2021;14:4-15.
               2019;15(134):112-119.
                                                                  doi: 10.1109/RBME.2020.2987975
               doi: 10.1016/j.eswa.2019.05.041
                                                               35.  Van EM, Hoop D, Viergever MA, Prokop M, Ginneken
            24.  Sangamithraa PB, Govindaraju S. Lung Tumor Detection   BV. Automatic lung segmentation from thoracic computed
               and Classification Using EK-Mean Clustering. In:  IEEE   tomography scans using a hybrid approach with error
               International Conference on Wireless Communications, Signal   detection. Med Phys. 2009;36:2934-2947.
               Processing and Networking (WiSPNET); 2016. p. 2201-2206.
                                                                  doi: 10.1118/1.3147146
            25.  Joon P, Bajaj SB, Jatain A. Segmentation and detection of lung
               cancer using image processing and clustering techniques. In:   36.  Doi K. Computer-aided diagnosis in medical imaging:
               Advanced Computing and Intelligent Engineering. Germany:   Historical review, current status, and future potential.
               Springer Nature; 2019. p. 13-23.                   Comput Med Imaging Graph. 2007;31(5):198-211.
            26.  Xu M, Qi S, Yue Y, et al. Segmentation of lung parenchyma in      doi: 10.1016/j.compmedimag.2007.02.002
               CT images using CNN trained with the clustering algorithm   37.  Choi YJ, Baek JH, Park HS, et al. A computer-aided diagnosis
               generated dataset. Biomed Eng Online. 2019;18:2.   system using artificial intelligence for the diagnosis and
               doi: 10.1186/s12938-018-0619-9                     characterization of thyroid nodules on ultrasound: Initial
                                                                  clinical assessment. Thyroid. 2017;27(4):546-552.
            27.  Farag AA, Munim HE, Graham JH, Farag AA. A  novel
               approach for lung nodules segmentation in chest CT using      doi: 10.1089/thy.2016.0372
               level sets. IEEE Trans Image Process. 2013;22:5202-5213.  38.  Isaac A, Nehemiah HK, Dunston DS, Christo VRE,
               doi: 10.1109/TIP.2013.2282899                      Kannan  A. Feature selection using competitive coevolution
                                                                  of bio-inspired algorithms for the diagnosis of pulmonary
            28.  Swierczynski P, Papież BW, Schnabel JA, Macdonald C.   emphysema. Biomed Signal Process Control. 2022;72:103340.
               A  level-set approach to joint image segmentation and
               registration with application to CT lung imaging. Comput      doi: 10.1016/j.bspc.2021.103340
               Med Imaging Graph. 2018;65:58-68.               39.  Khin Y, Maneerat N, Sreng S, Hamamoto K. Ensemble deep
                                                                  learning for the detection of COVID-19 in unbalanced chest
               doi: 10.1016/j.compmedimag.2017.06.003
                                                                  X-ray dataset. Appl Sci. 2021;11(22):10528.
            29.  Wei J, Deihui X, Zhang B, Wang L, Kopriva I, Chen X.
               Random walk and graph cut for co-segmentation of lung      doi: 10.3390/app112210528
               tumor on PET-CT images.  IEEE Trans Image Process.   40.  Venkatesan R, Kadry R, Thanaraj KP, Kamalanand K, Seo  S.


            Volume 2 Issue 1 (2025)                         26                               doi: 10.36922/aih.3349
   27   28   29   30   31   32   33   34   35   36   37