Page 31 - AIH-2-1
P. 31

Artificial Intelligence in Health                          COVID-19 diagnosis: FPA, k-NN, and SVM classifiers



            database. This would allow for a thorough evaluation and   6.   Carotti M, Salaffi F, Puttini PS, et al. Chest CT features of
            improvement of its clinical validity.                 coronavirus disease 2019 (COVID-19) pneumonia: Key
                                                                  points for radiologists. J Natl Public Health Emerg Collect.
            Acknowledgments                                       2020;125:636-646.

            None.                                                 doi: 10.1007/s11547-020-01237-4
                                                               7.   Fang Y, Zhang H, Xie J,  et al. Sensitivity of chest CT
            Funding                                               for COVID-19: Comparison to RT-PCR.  Radiology.
            None.                                                 2020;296(2):E115-E117.
                                                                  doi: 10.1148/radiol.2020200432
            Conflict of interest
                                                               8.   Ng MY, Lee EY, Yang J, et al. Imaging profile of the COVID-19
            The authors declare no conflicts of interest.         infection: Radiologic findings and literature review. Radiol
                                                                  Cardiothorac Imaging. 2020;2(1):e200034.
            Author contributions                                  doi: 10.1148/ryct.2020200034
            Conceptualization: Betshrine Rachel Jibinsingh, Khanna   9.   Ai  T,  Yang  Z,  Hou  H,  et al.  Correlation  of  chest  CT  and
               Nehemiah Harichandran                              RT-PCR testing in COVID-19 in China: A  report of
            Formal Analysis: Betshrine Rachel Jibinsingh          1014 cases. Thorac Imaging Radiol. 2020;296(2):E32-E40.
            Investigation: Betshrine Rachel Jibinsingh, Kabilasri      doi: 10.1148/radiol.2020200642
               Jayakannan, Rebecca Mercy Victoria Manoharan
            Methodology:  Betshrine Rachel Jibinsingh, Khanna   10.  Pal NR, Pal SK. A review on image segmentation techniques.
               Nehemiah Harichandran, Anisha Isaac                Pattern Recognit. 1993;26(9):1277-1294.
            Writing – original draft: Betshrine Rachel Jibinsingh     doi: 10.1016/0031-3203(93)90135-J
            Writing – review & editing:  Betshrine  Rachel Jibinsingh,   11.  Norouzi A, Rahim MS, Altameem A, et al. Medical image
               Khanna Nehemiah Harichandran                       segmentation methods, algorithms, and applications. IETE
                                                                  Tech Rev. 2014;31(3):199-213.
            Ethics approval and consent to participate
                                                                  doi: 10.1080/02564602.2014.906861
            Not applicable.
                                                               12.  Sitanggang  S,  Sonang  S,  Yuhandri  Y,  Setiawan A.  Image
            Consent for publication                               transformation with lung image thresholding and
                                                                  segmentation method.  J  RESTI (Rekayasa  Sist  Teknol
            Not applicable.                                       Inform). 2023;7(2):278-285.
            Availability of data                                  doi: 10.29207/resti.v7i2.4321
                                                               13.  Yu T, Huang L. An Adaptive Thresholding Method for
            Data used in this work are available from the corresponding   Automatic Lung Segmentation in CT Images.  In:  IEEE
            author on reasonable request.                         AFRICON Conference; 2009. p. 1-5.

            References                                         14.  Sweetlin JD, Nehemiah HK, Kannan A. Feature selection
                                                                  using ant colony optimization with tandem-run recruitment
            1.   Fuller HW. Lea HC, editor. On Diseases of the Lungs and Air-  to diagnose bronchitis from CT scan images.  Comput
               Passages: Their Pathology, Physical Diagnosis, Symptoms, and   Methods Programs Biomed. 2017;145:115-125.
               Treatment. Kissingert: Publishing; 1867.
                                                                  doi: 10.1016/j.cmpb.2017.04.009
            2.   Tomashefski JF, Farver CF.  Anatomy and histology of
               the lung. In:  Dail and Hammar’s Pulmonary Pathology.   15.  Sweetlin JD, Nehemiah HK, Kannan A. Computer aided
               Germany: Springer; 2008. p. 20-48.                 diagnosis of drug sensitive pulmonary tuberculosis with
                                                                  cavities, consolidations and nodular manifestations on lung
            3.   Demedts M, Wells AU, Anto JM,  et al. Interstitial lung   CT images. Int J Bio Inspired Comput. 2019;13(2):71-85.
               diseases: An epidemiological overview.  Eur Respir J.
               2001;18(32):2S-16S.                                doi: 10.1504/IJBIC.2019.098405
            4.   Schwarz  T,  Johnson  V.  Lungs  and  bronchi.  In:  Veterinary   16.  Dehmeshki J, Amin H, Valdivieso M, Ye X. Segmentation of
               Computed Tomography. United States: John Wiley and Sons;   pulmonary nodules in thoracic CT scans: A region growing
               2011. p. 261-262.                                  approach. IEEE Trans Med Imaging. 2008;27(4):467-480.
                                                                  doi: 10.1109/TMI.2007.907555
            5.   Fan DP, Zhou T, Ji GP, et al. Inf-net: Automatic COVID-19
               lung infection segmentation from CT images. IEEE Trans   17.  Nabipour S, Khorshidi A, Noorian B. Lung tumor
               Med Imaging. 2020;39(8):2626-2637.                 segmentation using improved region growing algorithm.


            Volume 2 Issue 1 (2025)                         25                               doi: 10.36922/aih.3349
   26   27   28   29   30   31   32   33   34   35   36