Page 31 - AIH-2-1
P. 31
Artificial Intelligence in Health COVID-19 diagnosis: FPA, k-NN, and SVM classifiers
database. This would allow for a thorough evaluation and 6. Carotti M, Salaffi F, Puttini PS, et al. Chest CT features of
improvement of its clinical validity. coronavirus disease 2019 (COVID-19) pneumonia: Key
points for radiologists. J Natl Public Health Emerg Collect.
Acknowledgments 2020;125:636-646.
None. doi: 10.1007/s11547-020-01237-4
7. Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT
Funding for COVID-19: Comparison to RT-PCR. Radiology.
None. 2020;296(2):E115-E117.
doi: 10.1148/radiol.2020200432
Conflict of interest
8. Ng MY, Lee EY, Yang J, et al. Imaging profile of the COVID-19
The authors declare no conflicts of interest. infection: Radiologic findings and literature review. Radiol
Cardiothorac Imaging. 2020;2(1):e200034.
Author contributions doi: 10.1148/ryct.2020200034
Conceptualization: Betshrine Rachel Jibinsingh, Khanna 9. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and
Nehemiah Harichandran RT-PCR testing in COVID-19 in China: A report of
Formal Analysis: Betshrine Rachel Jibinsingh 1014 cases. Thorac Imaging Radiol. 2020;296(2):E32-E40.
Investigation: Betshrine Rachel Jibinsingh, Kabilasri doi: 10.1148/radiol.2020200642
Jayakannan, Rebecca Mercy Victoria Manoharan
Methodology: Betshrine Rachel Jibinsingh, Khanna 10. Pal NR, Pal SK. A review on image segmentation techniques.
Nehemiah Harichandran, Anisha Isaac Pattern Recognit. 1993;26(9):1277-1294.
Writing – original draft: Betshrine Rachel Jibinsingh doi: 10.1016/0031-3203(93)90135-J
Writing – review & editing: Betshrine Rachel Jibinsingh, 11. Norouzi A, Rahim MS, Altameem A, et al. Medical image
Khanna Nehemiah Harichandran segmentation methods, algorithms, and applications. IETE
Tech Rev. 2014;31(3):199-213.
Ethics approval and consent to participate
doi: 10.1080/02564602.2014.906861
Not applicable.
12. Sitanggang S, Sonang S, Yuhandri Y, Setiawan A. Image
Consent for publication transformation with lung image thresholding and
segmentation method. J RESTI (Rekayasa Sist Teknol
Not applicable. Inform). 2023;7(2):278-285.
Availability of data doi: 10.29207/resti.v7i2.4321
13. Yu T, Huang L. An Adaptive Thresholding Method for
Data used in this work are available from the corresponding Automatic Lung Segmentation in CT Images. In: IEEE
author on reasonable request. AFRICON Conference; 2009. p. 1-5.
References 14. Sweetlin JD, Nehemiah HK, Kannan A. Feature selection
using ant colony optimization with tandem-run recruitment
1. Fuller HW. Lea HC, editor. On Diseases of the Lungs and Air- to diagnose bronchitis from CT scan images. Comput
Passages: Their Pathology, Physical Diagnosis, Symptoms, and Methods Programs Biomed. 2017;145:115-125.
Treatment. Kissingert: Publishing; 1867.
doi: 10.1016/j.cmpb.2017.04.009
2. Tomashefski JF, Farver CF. Anatomy and histology of
the lung. In: Dail and Hammar’s Pulmonary Pathology. 15. Sweetlin JD, Nehemiah HK, Kannan A. Computer aided
Germany: Springer; 2008. p. 20-48. diagnosis of drug sensitive pulmonary tuberculosis with
cavities, consolidations and nodular manifestations on lung
3. Demedts M, Wells AU, Anto JM, et al. Interstitial lung CT images. Int J Bio Inspired Comput. 2019;13(2):71-85.
diseases: An epidemiological overview. Eur Respir J.
2001;18(32):2S-16S. doi: 10.1504/IJBIC.2019.098405
4. Schwarz T, Johnson V. Lungs and bronchi. In: Veterinary 16. Dehmeshki J, Amin H, Valdivieso M, Ye X. Segmentation of
Computed Tomography. United States: John Wiley and Sons; pulmonary nodules in thoracic CT scans: A region growing
2011. p. 261-262. approach. IEEE Trans Med Imaging. 2008;27(4):467-480.
doi: 10.1109/TMI.2007.907555
5. Fan DP, Zhou T, Ji GP, et al. Inf-net: Automatic COVID-19
lung infection segmentation from CT images. IEEE Trans 17. Nabipour S, Khorshidi A, Noorian B. Lung tumor
Med Imaging. 2020;39(8):2626-2637. segmentation using improved region growing algorithm.
Volume 2 Issue 1 (2025) 25 doi: 10.36922/aih.3349

