Page 34 - AIH-2-1
P. 34
Artificial Intelligence in Health COVID-19 diagnosis: FPA, k-NN, and SVM classifiers
Unconventional Computing and Natural Computation. 69. Xingyi Y, Xuehai H, Jinyu Z, et al. COVID-CT Dataset: A CT
Germany: Springer; 2012. p. 240-249. Image Dataset about COVID-19. [arXiv Preprint].
65. Pavlyukevich I. Levy flights, non-local search and simulated 70. Polsinelli M, Cinque L, Placidi G. A light CNN for detecting
annealing. J Comput Phys. 2007;226(2):1830-1844. COVID-19 from CT scans of the chest. Pattern Recognit
Lett. 2020;140:95-100.
66. Fred AL, Daniel A, Carol JJ. SFCM for efficient brain tumour
segmentation. Int J Adv Eng Technol. 2019. doi: 10.1016/j.patrec.2020.10.001
67. He B, Zhao W, Pi JY, et al. A biomarker basing on radiomics 71. Ali AE, Assadi TA. GLCMs based multi-inputs 1D CNN
for the prediction of overall survival in non-small cell lung deep learning neural network for COVID-19 texture
cancer patients. Respir Res. 2018;19:199. feature extraction and classification. Karbala Int J Mod Sci.
2022;8(1):28-39.
doi: 10.1186/s12931-018-0887-8
doi: 10.33640/2405-609X.3201
68. Isaac A, Nehemiah HK, Kannan A. Computer-aided
diagnosis system for diagnosis of cavitary and miliary 72. Pedro S, Luz E, Silva G, et al. COVID-19 detection in CT
tuberculosis using improved artificial bee colony images with deep learning: A voting-based scheme and cross-
optimization. IETE J Res. 2021;69:1-20. datasets analysis. Inform Med Unlocked. 2020;20:100427.
doi: 10.1080/03772063.2021.1946440 doi: 10.1016/j.imu.2020.100427
Volume 2 Issue 1 (2025) 28 doi: 10.36922/aih.3349

