Page 34 - AIH-2-1
P. 34

Artificial Intelligence in Health                          COVID-19 diagnosis: FPA, k-NN, and SVM classifiers



               Unconventional  Computing  and  Natural Computation.   69.  Xingyi Y, Xuehai H, Jinyu Z, et al. COVID-CT Dataset: A CT
               Germany: Springer; 2012. p. 240-249.               Image Dataset about COVID-19. [arXiv Preprint].
            65.  Pavlyukevich I. Levy flights, non-local search and simulated   70.  Polsinelli M, Cinque L, Placidi G. A light CNN for detecting
               annealing. J Comput Phys. 2007;226(2):1830-1844.   COVID-19 from CT scans of the chest.  Pattern Recognit
                                                                  Lett. 2020;140:95-100.
            66.  Fred AL, Daniel A, Carol JJ. SFCM for efficient brain tumour
               segmentation. Int J Adv Eng Technol. 2019.         doi: 10.1016/j.patrec.2020.10.001
            67.  He B, Zhao W, Pi JY, et al. A biomarker basing on radiomics   71.  Ali AE, Assadi TA. GLCMs based multi-inputs 1D CNN
               for the prediction of overall survival in non-small cell lung   deep learning neural network for COVID-19 texture
               cancer patients. Respir Res. 2018;19:199.          feature extraction and classification. Karbala Int J Mod Sci.
                                                                  2022;8(1):28-39.
               doi: 10.1186/s12931-018-0887-8
                                                                  doi: 10.33640/2405-609X.3201
            68.  Isaac A, Nehemiah HK, Kannan A. Computer-aided
               diagnosis  system  for  diagnosis  of  cavitary  and  miliary   72.  Pedro S, Luz E, Silva G, et al. COVID-19 detection in CT
               tuberculosis using improved artificial bee colony   images with deep learning: A voting-based scheme and cross-
               optimization. IETE J Res. 2021;69:1-20.            datasets analysis. Inform Med Unlocked. 2020;20:100427.
               doi: 10.1080/03772063.2021.1946440                 doi: 10.1016/j.imu.2020.100427

























































            Volume 2 Issue 1 (2025)                         28                               doi: 10.36922/aih.3349
   29   30   31   32   33   34   35   36   37   38   39