Page 33 - AIH-2-1
P. 33

Artificial Intelligence in Health                          COVID-19 diagnosis: FPA, k-NN, and SVM classifiers



               Firefly-Algorithm Supported Scheme to Detect COVID-19   52.  Atta A, Sultan K, Naseer I,  et al. Supervised machine
               Lesion in Lung CT Scan Images using Shannon Entropy and   learning-based prediction of COVID-19.  Comput Mater
               Markov Random Field. [arXiv Preprint].             Contin. 2021;69(1):21-34.
            41.  Chandra  SC. Segmentation  and evaluation of  COVID-     doi: 10.32604/cmc.2021.013453
               19 lesion from CT scan slices-a study with Kapur/Otsu   53.  Rajinikanth V, Dey N, Raj AN, et al. Harmony Search and
               function and Cuckoo Search Algorithm. 2020.        Otsu based System for Coronavirus Disease (COVID-19)
               doi: 10.21203/rs.3.rs-40148/v1                     Detection Using Lung CT Scan images. arXiv [Preprint].
            42.  Mohammed SN, Alkinani FS, Hassan YA. Automatic   54.  Tongxue Z, Canu S, Ruan S. An Automatic COVID-19 CT
               computer-aided diagnostic  for COVID-19 based on chest   Segmentation Network Using Spatial and Channel Attention
               X-ray image and particle swarm intelligence. Int J Intell Eng   Mechanism. [arXiv Preprint].
               Syst. 2020;13(5):63-73.                         55.  Mobiny A, Cicalese PA, Zare S,  et al.  Radiologist-level
            43.  Bhargava A, Bansal A, Goyal V. Machine learning-based   COVID-19 Detection Using CT Scans with Detail-oriented
               automatic detection of novel coronavirus (COVID-19)   Capsule Networks. [arXiv Preprint].
               disease. Multimed Tools Appl. 2022;81(10):13731-13750.  56.  Hasoon  JN,  Fadel  AH,  Hameed  RS,  et al.  COVID-19
               doi: 10.1007/s11042-022-12508-9                    anomaly detection and classification method based on
                                                                  supervised machine learning of chest X-ray image. Results
            44.  Shankar K, Mohanty SN, Yadav K, Gopalakrishnan T,   Phys. 2021;31:105045.
               Elmisery AM. Automated COVID-19 diagnosis and
               classification using convolutional neural network with   57.  Mahdy LN, Ezzat KA, Elmousalami HH, et al. Automatic
               fusion based feature extraction model.  Cogn Neurodyn.   X-ray  COVID-19  Lung Image  Classification  System  Based
               2021;10:1-4.                                       on Multi-level Thresholding and Support Vector Machine.
                                                                  MedRxiv; 2020. p. 2020-2023.
               doi: 10.1007/s11571-021-09712-y
                                                               58.  Elizabeth DS, Raj CS, Nehemiah HK, Kannan A. A novel
            45.  Kadry S, Rajinikanth V, Rho S,  et  al.  Development  of  a   segmentation approach for improving diagnostic accuracy
               Machine-learning System to Classify Lung CT Scan Images   of CAD systems for detecting lung cancer from chest
               into Normal/COVID-19 Class. arXiv [Preprint]       computed tomography images. J Data Inf Qual. 2012;3:1-16.
            46.  Wu G, Zhou S, Wang Y, et al. A prediction model of outcome   59.  Rachel RB, Nehemiah HK, Marishanjunath CS,
               of SARS-CoV-2 pneumonia based on laboratory findings.   Manoharan   RM. Diagnosis of pulmonary edema and
               Sci Rep. 2020;10(1):14042.                         COVID-19 from CT slices using squirrel search algorithm,
                                                                  support vector machine and back propagation neural
               doi: 10.1038/s41598-020-71114-7
                                                                  network. J Intell Fuzzy Syst. 2023;44:1-4.
            47.  Banerjee A, Ray S, Vorselaars B,  et al. Use of machine      doi: 10.3233/JIFS-222564
               learning and artificial intelligence to predict SARS-CoV-2
               infection from full blood counts in a population.  Int   60.  Rachel RB, Nehemiah HK, Singh VK, Manoharan RM.
               Immunopharmacol. 2020;86:106705.                   Diagnosis of COVID-19 from CT slices using whale
                                                                  optimization algorithm, support vector machine and multi-
               doi: 10.1016/j.intimp.2020.106705                  layer perceptron. J Xray Sci Technol. 2023;32:253-269.
            48.  Moutaz A, Awajan A, Mesleh A, Alhyari S. COVID-19      doi: 10.3233/XST-230196
               prediction and detection using deep learning. Int J Comput
               Inf Syst Ind Manag Appl. 2020;12:11-14.         61.  Anisha I, Nehemiah HK, Anubha I, Kannan A. Computer-
                                                                  Aided Diagnosis system for diagnosis of pulmonary
            49.  Feng C, Wang L, Chen X, et al. A Novel Triage Tool of Artificial   emphysema using  bio-inspired  algorithms.  Comput Biol
               Intelligence-assisted Diagnosis Aid System for Suspected   Med. 2020;124:103940.
               COVID-19 Pneumonia in Fever Clinics. MedRxiv; 2020.
                                                                  doi: 10.1016/j.compbiomed.2020.103940
            50.  Najjar FH, Kadhim KA, Kareem MH, et al. Classification
               of  COVID-19  from  X-ray  images  using  GLCM  features   62.  Glover B.  Understanding Flowers and Flowering: An
               and machine learning.  Malays J Fundam Appl Sci.   Integrated Approach. Oxford: Oxford University Press; 2007.
               2023;19(6):389-398.                             63.  Kalra S, Arora S. Firefly Algorithm Hybridized with Flower
                                                                  Pollination Algorithm for Multimodal Functions. In:
               doi: 10.11113/mjfas.v19n3.2911
                                                                  Proceedings  of  the  International  Congress  on  Information
            51.  Maryam A, Ahmad I, Imtiaz A, Mohammed A. Ensemble   and Communication Technology. Germany: Springer; 2016.
               learning model for diagnosing COVID-19 from routine   p. 207-219.
               blood tests. Inform Med Unlocked. 2020;21:100449.
                                                               64.  Yang XS. Flower Pollination Algorithm for Global
               doi: 10.1016/j.imu.2020.100449                     Optimization.  In:  International  Conference  on


            Volume 2 Issue 1 (2025)                         27                               doi: 10.36922/aih.3349
   28   29   30   31   32   33   34   35   36   37   38