Page 112 - AIH-2-3
P. 112

Artificial Intelligence in Health                                  Bone suppression utility for chest diagnosis



               doi: 10.1016/j.media.2021.102046                   doi: 10.1109/ICPR.2010.579
            35.  Borghesi A, Maroldi R. COVID-19 outbreak in Italy:   46.  Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality
               Experimental chest X-ray scoring system for quantifying   assessment: From error visibility to structural similarity.
               and monitoring disease progression.  Radiol Med.   IEEE Trans Image Process. 2004;13(4):600-612.
               2020;125:509-513.
                                                                  doi: 10.1109/tip.2003.819861
               doi: 10.1007/s11547-020-01200-3
                                                               47.  Huang G, Liu Z, Van Der Maaten L, Weinberger KQ.
            36.  Borghesi A, Zigliani A, Masciullo R,  et al. Radiographic   Densely Connected Convolutional Networks. In:  IEEE
               severity  index  in  COVID-19  pneumonia:  Relationship   Conference on Computer Vision and Pattern Recognition
               to age and sex in 783 Italian patients.  Radiol Med.   (CVPR). Honolulu, HI, USA: IEEE; 2017. p. 2261-2269.
               2020;125:461-464.
                                                                  doi: 10.1109/CVPR.2017.243
               doi: 10.1007/s11547-020-01202-1
                                                               48.  He K, Zhang X, Ren S, Sun J. Deep Residual Learning for
            37.  Caroprese L, Vocaturo E, Zumpano E. Argumentation
               approaches for explanaible AI in medical informatics. Intell   Image Recognition. In: IEEE Conference on Computer Vision
               Syst Appl. 2022;16:200109.                         and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE;
                                                                  2016. p. 770-778.
               doi: 10.1016/j.iswa.2022.200109
                                                                  doi: 10.1109/CVPR.2016.90
            38.  Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D,
               Batra D. Grad-CAM: Visual Explanations from Deep   49.  Radosavovic I, Kosaraju RP, Girshick R, He K, Dollár P.
               Networks via Gradient-based Localization. In  2017 IEEE   Designing Network Design Spaces.  In:  Proceedings of the
               International Conference on Computer Vision  (ICCV).   IEEE/CVF Conference on Computer Vision and Pattern
               Venice, Italy: IEEE; 2017. p. 618-626.             Recognition (CVPR); 2020. p. 10428-10436.
               doi: 10.1109/ICCV.2017.74                          doi: 10.48550/arXiv.2003.13678
            39.  Musthafa MM, Mahesh TR, Vinoth Kumar V, Guluwadi S.   50.  Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet:
               Enhancing brain tumor detection in MRI images through   A Large-scale Hierarchical Image Database. In: Proceedings
               explainable AI using Grad-CAM with resnet 50. BMC Med   of the IEEE Conference on Computer Vision and Pattern
               Imaging. 2024;24(1):107.                           Recognition (CVPR). Miami, FL, USA: IEEE; 2009. p. 248-255.
               doi: 10.1186/s12880-024-01292-7                    doi: 10.1109/CVPR.2009.5206848
            40.  Talaat FM, Gamel SA, El-Balka RM, Shehata M, ZainEldin H.   51.  Schober P, Boer C, Schwarte LA. Correlation coefficients:
               Grad-CAM enabled breast cancer classification with a   Appropriate use and interpretation.  Anesth Analg.
               3D  inception-ResNet  V2:  Empowering  radiologists  with
               explainable insights. Cancers (Basel). 2024;16(21):3668.  2018;126(5):1763-1768.
               doi: 10.3390/cancers16213668                       doi: 10.1213/ANE.0000000000002864
            41.  Ronneberger O, Fischer P, Brox T. U-Net: Convolutional   52.  Karim KS, Tilley IS. Portable single-exposure dual-energy
               networks for biomedical image segmentation. In:  Medical   X-ray detector for improved point-of-care diagnostic
               Image Computing and Computer-Assisted Intervention-  imaging. Mil Med. 2023;188(Suppl 6):84-91.
               MICCAI 2015. Cham: Springer; 2015. p. 234-241.     doi: 10.1093/milmed/usad034
            42.  JSRT Database. Available from: https://db.jsrt.or.jp/eng.php   53.  Shunkov YE, Kobylkin IS, Prokhorov AV,  et  al. Motion
               [Last accessed on 2024 Oct 15].                    artefact reduction in dual-energy radiography. Biomed Eng.
            43.  Isora P, Zhu JY, Zhou T, Efros AA. Image-to-image   2022;55:415-419.
               Translation with Conditional Adversarial Networks. In:      doi: 10.1007/s10527-022-10148-9
               Proceedings of the 2017 IEEE Conference on Computer Vision
               and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE;   54.  Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V,
               2017. p. 5967-5976.                                Courville A. Improved Training of Wasserstein GANs. In:
               doi: 10.1109/CVPR.2017.632                         Neural Information Processing Systems 30 (NIPS 2017). San
                                                                  Diego, CA, USA; 2017. p. 5769-5779.
            44.  Junyanz/Pytorch-CycleGAN-and-Pix2pix. Available from:
               https://github.com/junyanz/pytorch-cyclegan-and-pix2pix   55.  Zhang L, Xu Z, Barnes C,  et al. Perceptual Artifacts
               [Last accessed on 2024 Oct 15].                    Localization for Image Synthesis Tasks. In:  Proceedings of
                                                                  the IEEE/CVF International Conference on Computer Vision
            45.  Horé A, Ziou D. Image Quality Metrics: PSNR vs. SSIM. In:   (ICCV). Paris, France: IEEE; 2023. p. 7545-7556.
               2010 20  International Conference on Pattern Recognition.
                     th
               Istanbul, Turkey: IEEE; 2010. p. 2366-2369.        doi: 10.1109/ICCV51070.2023.00697

            Volume 2 Issue 3 (2025)                        106                               doi: 10.36922/aih.5608
   107   108   109   110   111   112   113   114   115   116   117