Page 111 - AIH-2-3
P. 111
Artificial Intelligence in Health Bone suppression utility for chest diagnosis
14. Avolio M, Fuduli A, Vocaturo E, Zumpano E. A comparative doi: 10.1016/j.iswa.2022.200148
study of linear type multiple instance learning techniques 25. Lam NFD, Sun H, Song L, et al. Development and
for detecting COVID-19 by chest X-ray images. Prog Artif validation of bone-suppressed deep learning classification
Intell. 2024.
of COVID-19 presentation in chest radiographs. Quant
doi: 10.1007/s13748-024-00332-1 Imaging Med Surg. 2022;12(7):3917-3931.
15. Takaki T, Murakami S, Tani N, Aoki T. Evaluation of doi: 10.21037/qims-21-791
the clinical utility of temporal subtraction using bone
suppression processing in digital chest radiography. Heliyon. 26. Rajaraman S, Zamzmi G, Folio L, Alderson P, Antani S.
2023;9(1):e13004. Chest X-ray bone suppression for improving classification
of tuberculosis-consistent findings. Diagnostics (Basel).
doi: 10.1016/j.heliyon.2023 2021;11(5):840.
16. Van der Heyden B. The potential application of dual- doi: 10.3390/diagnostics11050840
energy subtraction radiography for COVID-19 pneumonia
imaging. Br J Radiol. 2021;94(1120):20201384. 27. Rajaraman S, Cohen G, Spear L, Folio L, Antani S.
DeBoNet: A deep bone suppression model ensemble to
doi: 10.1259/bjr.20201384 improve disease detection in chest radiographs. PLoS One.
17. Matsubara N, Teramoto A, Saito K, Fujita H. Bone 2022;17(3):e0265691.
suppression for chest X-ray image using a convolutional doi: 10.1371/journal.pone.0265691
neural filter. Australas Phys Eng Sci Med. 2019;43:97-108.
28. Kim H, Lee KH, Han K, et al. Development and validation
doi: 10.1007/s13246-019-00822-w of a deep learning-based synthetic bone-suppressed model
18. Han L, Lyu Y, Peng C, Zhou SK. GAN-based disentanglement for pulmonary nodule detection in chest radiographs. JAMA
learning for chest X-ray rib suppression. Med Image Anal. Netw Open. 2023;6(1):e2253820.
2022;77:102369. doi: 10.1001/jamanetworkopen.2022.53820
doi: 10.1016/j.media.2022.102369 29. Bae K, Oh DY, Yun ID, Jeon KN. Bone suppression on chest
19. Cho K, Seo J, Kyung S, Kim M, Hong GS, Kim N. Bone radiographs for pulmonary nodule detection: Comparison
suppression on pediatric chest radiographs via a deep between a generative adversarial network and dual-energy
learning-based cascade model. Comput Methods Programs subtraction. Korean J Radiol. 2022;23(1):139-149.
Biomed. 2022;215:106627. doi: 10.3348/kjr.2021.0146
doi: 10.1016/j.cmpb.2022.106627 30. Xu D, Xu Q, Nhieu K, Ruan D, Sheng K. An efficient and
20. Xie W, Gan M, Tan X, Li M, Yang W, Wang W. Efficient robust method for chest X-ray rib suppression that improves
labeling for fine-tuning chest X-ray bone-suppression pulmonary abnormality diagnosis. Diagnostics (Basel).
networks for pediatric patients. Med Phys. 2024;52:978-992. 2023;13(9):1652.
doi: 10.1002/mp.17516 doi: 10.3390/diagnostics13091652
21. Ait Nasser A, Akhloufi MA. A review of recent advances 31. Thölke P, Mantilla-Ramos YJ, Abdelhedi H, et al. Class
in deep learning models for chest disease detection using imbalance should not throw you off balance: Choosing the
radiography. Diagnostics (Basel). 2023;13(1):159. right classifiers and performance metrics for brain decoding
with imbalanced data. Neuroimage. 2023;277:120253.
doi: 10.3390/diagnostics13010159
doi: 10.1016/j.neuroimage.2023.120253
22. Yamazaki A, Koshida A, Tanaka T, Seki M, Ishida T.
Development of artificial intelligence-based dual-energy 32. Cohen JP, Dao L, Roth K, et al. Predicting COVID-19
subtraction for chest radiography. Appl Sci. 2023;13(12):7220. pneumonia severity on chest X-ray with deep learning.
Cureus. 2020;12(7):e9448.
doi: 10.3390/app13127220
doi: 10.7759/cureus.9448
23. Rani G, Misra A, Dhaka VS, Zumpano E, Vocaturo E.
Spatial feature and resolution maximization GAN for 33. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ,
bone suppression in chest radiographs. Comput Methods Ghassemi M. COVID-19 image data collection: Prospective
Programs Biomed. 2022;224:107024. predictions are the future. J Mach Learn Biomed Imaging.
2020;2:1-38.
doi: 10.1016/j.cmpb.2022.107024
doi: 10.59275/j.melba.2020-48g7
24. Rani G, Misra A, Dhaka VS, et al. A multi-modal bone
suppression, lung segmentation, and classification approach 34. Signoroni A, Savardi M, Benini S, et al. BS-Net: Learning
for accurate COVID-19 detection using chest radiographs. COVID-19 pneumonia severity on a large chest X-ray
Intell Syst Appl. 2022;16:200148. dataset. Med Image Anal. 2021;71:102046.
Volume 2 Issue 3 (2025) 105 doi: 10.36922/aih.5608

