Page 111 - AIH-2-3
P. 111

Artificial Intelligence in Health                                  Bone suppression utility for chest diagnosis



            14.  Avolio M, Fuduli A, Vocaturo E, Zumpano E. A comparative      doi: 10.1016/j.iswa.2022.200148
               study of linear type multiple instance learning techniques   25.  Lam  NFD,  Sun  H,  Song  L,  et al.  Development  and
               for detecting COVID-19 by chest X-ray images. Prog Artif   validation of bone-suppressed deep learning classification
               Intell. 2024.
                                                                  of COVID-19 presentation in chest radiographs.  Quant
               doi: 10.1007/s13748-024-00332-1                    Imaging Med Surg. 2022;12(7):3917-3931.
            15.  Takaki T, Murakami S, Tani N, Aoki T. Evaluation of      doi: 10.21037/qims-21-791
               the clinical utility of temporal subtraction using bone
               suppression processing in digital chest radiography. Heliyon.   26.  Rajaraman S, Zamzmi G, Folio L, Alderson P, Antani S.
               2023;9(1):e13004.                                  Chest X-ray bone suppression for improving classification
                                                                  of tuberculosis-consistent findings.  Diagnostics (Basel).
               doi: 10.1016/j.heliyon.2023                        2021;11(5):840.
            16.  Van  der Heyden B.  The  potential  application of  dual-     doi: 10.3390/diagnostics11050840
               energy subtraction radiography for COVID-19 pneumonia
               imaging. Br J Radiol. 2021;94(1120):20201384.   27.  Rajaraman S, Cohen G, Spear L, Folio L, Antani S.
                                                                  DeBoNet: A  deep bone suppression model ensemble to
               doi: 10.1259/bjr.20201384                          improve disease detection in chest radiographs. PLoS One.
            17.  Matsubara N, Teramoto A, Saito K, Fujita H. Bone   2022;17(3):e0265691.
               suppression for chest X-ray image using a convolutional      doi: 10.1371/journal.pone.0265691
               neural filter. Australas Phys Eng Sci Med. 2019;43:97-108.
                                                               28.  Kim H, Lee KH, Han K, et al. Development and validation
               doi: 10.1007/s13246-019-00822-w                    of a deep learning-based synthetic bone-suppressed model
            18.  Han L, Lyu Y, Peng C, Zhou SK. GAN-based disentanglement   for pulmonary nodule detection in chest radiographs. JAMA
               learning for chest X-ray rib suppression. Med Image Anal.   Netw Open. 2023;6(1):e2253820.
               2022;77:102369.                                    doi: 10.1001/jamanetworkopen.2022.53820
               doi: 10.1016/j.media.2022.102369                29.  Bae K, Oh DY, Yun ID, Jeon KN. Bone suppression on chest
            19.  Cho K, Seo J, Kyung S, Kim M, Hong GS, Kim N. Bone   radiographs for pulmonary nodule detection: Comparison
               suppression on pediatric chest radiographs via a deep   between a generative adversarial network and dual-energy
               learning-based cascade model. Comput Methods Programs   subtraction. Korean J Radiol. 2022;23(1):139-149.
               Biomed. 2022;215:106627.                           doi: 10.3348/kjr.2021.0146
               doi: 10.1016/j.cmpb.2022.106627                 30.  Xu D, Xu Q, Nhieu K, Ruan D, Sheng K. An efficient and
            20.  Xie W, Gan M, Tan X, Li M, Yang W, Wang W. Efficient   robust method for chest X-ray rib suppression that improves
               labeling for fine-tuning chest X-ray bone-suppression   pulmonary abnormality diagnosis.  Diagnostics (Basel).
               networks for pediatric patients. Med Phys. 2024;52:978-992.  2023;13(9):1652.
               doi: 10.1002/mp.17516                              doi: 10.3390/diagnostics13091652
            21.  Ait Nasser A, Akhloufi MA. A review of recent advances   31.  Thölke P, Mantilla-Ramos YJ, Abdelhedi H,  et al. Class
               in deep learning models for chest disease detection using   imbalance should not throw you off balance: Choosing the
               radiography. Diagnostics (Basel). 2023;13(1):159.  right classifiers and performance metrics for brain decoding
                                                                  with imbalanced data. Neuroimage. 2023;277:120253.
               doi: 10.3390/diagnostics13010159
                                                                  doi: 10.1016/j.neuroimage.2023.120253
            22.  Yamazaki A, Koshida A, Tanaka T, Seki M, Ishida T.
               Development of artificial intelligence-based dual-energy   32.  Cohen JP, Dao L, Roth K,  et al. Predicting COVID-19
               subtraction for chest radiography. Appl Sci. 2023;13(12):7220.  pneumonia severity on chest X-ray with deep learning.
                                                                  Cureus. 2020;12(7):e9448.
               doi: 10.3390/app13127220
                                                                  doi: 10.7759/cureus.9448
            23.  Rani G, Misra A, Dhaka VS, Zumpano E, Vocaturo E.
               Spatial feature and resolution maximization GAN for   33.  Cohen JP, Morrison P, Dao L, Roth K, Duong TQ,
               bone suppression in chest radiographs.  Comput Methods   Ghassemi M. COVID-19 image data collection: Prospective
               Programs Biomed. 2022;224:107024.                  predictions are the future. J Mach Learn Biomed Imaging.
                                                                  2020;2:1-38.
               doi: 10.1016/j.cmpb.2022.107024
                                                                  doi: 10.59275/j.melba.2020-48g7
            24.  Rani G, Misra A, Dhaka VS,  et al. A  multi-modal bone
               suppression, lung segmentation, and classification approach   34.  Signoroni A, Savardi M, Benini S, et al. BS-Net: Learning
               for accurate COVID-19 detection using chest radiographs.   COVID-19  pneumonia  severity  on  a  large  chest  X-ray
               Intell Syst Appl. 2022;16:200148.                  dataset. Med Image Anal. 2021;71:102046.


            Volume 2 Issue 3 (2025)                        105                               doi: 10.36922/aih.5608
   106   107   108   109   110   111   112   113   114   115   116