Page 96 - AIH-2-3
P. 96

Artificial Intelligence in Health                                  Organizational culture’s impact on burnout



               doi: 10.1037/0021-9010.88.5.879                    2018;18(1):10.
            15.  DeVellis RF, Thorpe CT.  Scale Development: Theory and      doi: 10.1186/s12888-018-1589-y
               Applications. 5  ed. United States: SAGE Publications; 2022.
                          th
                                                               27.  Lee YL, Chou W, Chien TW, Chou PH, Yeh YT, Lee HF.
            16.  Braun V, Clarke V. Using thematic analysis in psychology.   An app developed for detecting nurse burnouts using
               Qual Res Psychol. 2006;3(2):77-101.                the convolutional neural networks in microsoft excel:
               doi: 10.1191/1478088706qp063oa                     Population-based questionnaire study.  JMIR  Med Inform.
                                                                  2020;8(5):e16528.
            17.  Bakker AB, Demerouti E. The Job Demands‐Resources
               model: State of the art. J Manag Psychol. 2007;22(3):309-328.     doi: 10.2196/16528
               doi: 10.1108/02683940710733115                  28.  Park J, Feng Y, Jeong SP. Developing an advanced prediction
                                                                  model for new employee turnover intention utilizing
            18.  Dewa CS, Loong D, Bonato S, Thanh NX, Jacobs P. How   machine learning techniques. Sci Rep. 2024;14(1):1221.
               does burnout affect physician productivity? A systematic
               literature review. BMC Health Serv Res. 2014;14(1):325.     doi: 10.1038/s41598-023-50593-4
               doi: 10.1186/1472-6963-14-325                   29.  del Pozo-Antúnez JJ, Molina-Sánchez H, Ariza-Montes A,
                                                                  Fernández-Navarro F. Promoting work engagement in the
            19.  Sonnentag  S,  Frese  M.  Stress  in  organizations.  In:   accounting profession: A  machine learning approach.  Soc
               Borman WC, Ilgen DR, Kilmoski RJ, editors. Comprehensive   Indic Res. 2021;157(2):653-670.
               Handbook of Psychology. Vol. 12. United States: Wiley; 2003.
               p. 454-481.                                        doi: 10.1007/s11205-021-02665-z
            20.  Oei MW, Pasinringi SA, Sidin AI, Noor NB, Rivai F, Healty.   30.  Schaufeli WB, Salanova M, González-romá V, Bakker AB.
               The influence of organizational culture and group climate   The measurement of engagement and burnout: A  two
               on innovation readiness at Hasanuddin university hospital.   sample confirmatory factor analytic approach. J Happiness
               Pharmacogn J. 2024;16(1):150-155.                  Stud. 2002;3(1):71-92.

               doi: 10.5530/pj.2024.16.21                         doi: 10.1023/A:1015630930326
            21.  Lee T, Yoon YS, Ji Y. Predicting new graduate nurses’   31.  Bailey C, Madden A, Alfes K, Fletcher L. The meaning,
               retention during transition using decision tree methods:   antecedents and outcomes of employee engagement:
               A longitudinal study. J Nurs Manag. 2024;2024:1-11.  A narrative synthesis. Int J Manage Rev. 2017;19(1):31-53.
               doi: 10.1155/2024/4687000                          doi: 10.1111/ijmr.12077
            22.  Louhenapessy EL, Lindawati T. Effect of emotional   32.  Johnson T, Shamroukh S. Predictive modeling of burnout
               intelligence and organizational culture on performance with   based  on  organizational  culture  perceptions  among
               organizational commitment as mediation. Eduvest J. Univ.   health systems employees: A  comparative study using
               Stud. 2022;2(3):554-570.                           correlation, decision tree, and Bayesian analyses.  Sci
                                                                  Rep. 2024;14(1):6083.
               doi: 10.36418/edv.v2i3.384
                                                                  doi: 10.1038/s41598-024-56771-2
            23.  Tavella G, Spoelma M, Parker G. Detecting burnout:
               Identifying  key symptoms using standard  and  machine   33.  Kovner CT, Brewer CS, Fatehi F, Katigbak C. Changing
               learning methods. Int J Stress Manag. 2023;30(4):366-375.  trends in newly licensed RNs. Am J Nurs. 2014;114(2):26-34;
                                                                  quiz 35.
               doi: 10.1037/STR0000296
                                                                  doi: 10.1097/01.NAJ.0000443767.20011.7f
            24.  Grządzielewska M. Using machine learning in burnout
               prediction: A  survey.  Child Adolesc Soc Work J.   34.  Kovner  CT,  Brewer  CS,  Fairchild  S,  Poornima  S,  Kim  H,
               2021;38(2):175-180.                                Djukic M. Newly licensed RNs’ characteristics, work attitudes,
                                                                  and intentions to work. Am J Nurs. 2007;107(9):58-70.
               doi: 10.1007/s10560-020-00733-w
                                                                  doi: 10.1097/01.NAJ.0000287512.31006.66
            25.  Taylor S, Jaques N, Nosakhare E, Sano A, Picard R.
               Personalized multitask learning for predicting tomorrow’s   35.  Havaei F, Ji XR, MacPhee M, Straight H. Identifying the
               mood, stress, and health.  IEEE  Trans  Affect  Comput.   most  important  workplace  factors in  predicting nurse
               2020;11(2):200-213.                                mental health using machine learning techniques.  BMC
                                                                  Nurs. 2021;20(1):216.
               doi: 10.1109/TAFFC.2017.2784832
                                                                  doi: 10.1186/S12912-021-00742-9
            26.  Bauernhofer K, Bassa D, Canazei M, et al. Subtypes in clinical
               burnout patients enrolled in an employee rehabilitation   36.  Lee  MCC,  Ding  AYL.  The  relationship  between  market
               program: Differences in burnout profiles, depression,   culture,  clan  culture,  benevolent  leadership,  work
               and recovery/resources-stress balance.  BMC Psychiatry.   engagement, and job performance: Leader’s dark triad as a


            Volume 2 Issue 3 (2025)                         90                               doi: 10.36922/aih.5127
   91   92   93   94   95   96   97   98   99   100   101