Page 96 - AIH-2-3
P. 96
Artificial Intelligence in Health Organizational culture’s impact on burnout
doi: 10.1037/0021-9010.88.5.879 2018;18(1):10.
15. DeVellis RF, Thorpe CT. Scale Development: Theory and doi: 10.1186/s12888-018-1589-y
Applications. 5 ed. United States: SAGE Publications; 2022.
th
27. Lee YL, Chou W, Chien TW, Chou PH, Yeh YT, Lee HF.
16. Braun V, Clarke V. Using thematic analysis in psychology. An app developed for detecting nurse burnouts using
Qual Res Psychol. 2006;3(2):77-101. the convolutional neural networks in microsoft excel:
doi: 10.1191/1478088706qp063oa Population-based questionnaire study. JMIR Med Inform.
2020;8(5):e16528.
17. Bakker AB, Demerouti E. The Job Demands‐Resources
model: State of the art. J Manag Psychol. 2007;22(3):309-328. doi: 10.2196/16528
doi: 10.1108/02683940710733115 28. Park J, Feng Y, Jeong SP. Developing an advanced prediction
model for new employee turnover intention utilizing
18. Dewa CS, Loong D, Bonato S, Thanh NX, Jacobs P. How machine learning techniques. Sci Rep. 2024;14(1):1221.
does burnout affect physician productivity? A systematic
literature review. BMC Health Serv Res. 2014;14(1):325. doi: 10.1038/s41598-023-50593-4
doi: 10.1186/1472-6963-14-325 29. del Pozo-Antúnez JJ, Molina-Sánchez H, Ariza-Montes A,
Fernández-Navarro F. Promoting work engagement in the
19. Sonnentag S, Frese M. Stress in organizations. In: accounting profession: A machine learning approach. Soc
Borman WC, Ilgen DR, Kilmoski RJ, editors. Comprehensive Indic Res. 2021;157(2):653-670.
Handbook of Psychology. Vol. 12. United States: Wiley; 2003.
p. 454-481. doi: 10.1007/s11205-021-02665-z
20. Oei MW, Pasinringi SA, Sidin AI, Noor NB, Rivai F, Healty. 30. Schaufeli WB, Salanova M, González-romá V, Bakker AB.
The influence of organizational culture and group climate The measurement of engagement and burnout: A two
on innovation readiness at Hasanuddin university hospital. sample confirmatory factor analytic approach. J Happiness
Pharmacogn J. 2024;16(1):150-155. Stud. 2002;3(1):71-92.
doi: 10.5530/pj.2024.16.21 doi: 10.1023/A:1015630930326
21. Lee T, Yoon YS, Ji Y. Predicting new graduate nurses’ 31. Bailey C, Madden A, Alfes K, Fletcher L. The meaning,
retention during transition using decision tree methods: antecedents and outcomes of employee engagement:
A longitudinal study. J Nurs Manag. 2024;2024:1-11. A narrative synthesis. Int J Manage Rev. 2017;19(1):31-53.
doi: 10.1155/2024/4687000 doi: 10.1111/ijmr.12077
22. Louhenapessy EL, Lindawati T. Effect of emotional 32. Johnson T, Shamroukh S. Predictive modeling of burnout
intelligence and organizational culture on performance with based on organizational culture perceptions among
organizational commitment as mediation. Eduvest J. Univ. health systems employees: A comparative study using
Stud. 2022;2(3):554-570. correlation, decision tree, and Bayesian analyses. Sci
Rep. 2024;14(1):6083.
doi: 10.36418/edv.v2i3.384
doi: 10.1038/s41598-024-56771-2
23. Tavella G, Spoelma M, Parker G. Detecting burnout:
Identifying key symptoms using standard and machine 33. Kovner CT, Brewer CS, Fatehi F, Katigbak C. Changing
learning methods. Int J Stress Manag. 2023;30(4):366-375. trends in newly licensed RNs. Am J Nurs. 2014;114(2):26-34;
quiz 35.
doi: 10.1037/STR0000296
doi: 10.1097/01.NAJ.0000443767.20011.7f
24. Grządzielewska M. Using machine learning in burnout
prediction: A survey. Child Adolesc Soc Work J. 34. Kovner CT, Brewer CS, Fairchild S, Poornima S, Kim H,
2021;38(2):175-180. Djukic M. Newly licensed RNs’ characteristics, work attitudes,
and intentions to work. Am J Nurs. 2007;107(9):58-70.
doi: 10.1007/s10560-020-00733-w
doi: 10.1097/01.NAJ.0000287512.31006.66
25. Taylor S, Jaques N, Nosakhare E, Sano A, Picard R.
Personalized multitask learning for predicting tomorrow’s 35. Havaei F, Ji XR, MacPhee M, Straight H. Identifying the
mood, stress, and health. IEEE Trans Affect Comput. most important workplace factors in predicting nurse
2020;11(2):200-213. mental health using machine learning techniques. BMC
Nurs. 2021;20(1):216.
doi: 10.1109/TAFFC.2017.2784832
doi: 10.1186/S12912-021-00742-9
26. Bauernhofer K, Bassa D, Canazei M, et al. Subtypes in clinical
burnout patients enrolled in an employee rehabilitation 36. Lee MCC, Ding AYL. The relationship between market
program: Differences in burnout profiles, depression, culture, clan culture, benevolent leadership, work
and recovery/resources-stress balance. BMC Psychiatry. engagement, and job performance: Leader’s dark triad as a
Volume 2 Issue 3 (2025) 90 doi: 10.36922/aih.5127

