Page 94 - AJWEP-22-6
P. 94

Heidarnejad, et al.

                40.  Emiroglu ME, Kisi O. Prediction of discharge coefficient
                   for trapezoidal labyrinth side weir using a neuro-fuzzy   47.  Lukas P, Melesse AM, Kenea TT. Predicting reservoir
                   approach. Water Resour Manag. 2013;27:1473-1488.     sedimentation  using  multilayer  perceptron  -  artificial
                   doi: 10.1007/s11269-012-0249-0                       neural network model with measured and forecasted
                41.  Cortes  C,  Vapnik  V.  Support-vector  networks.  Mach   hydrometeorological data in gibe-III reservoir, omo-gibe
                   Learn. 1995;20:273-297.                              river basin, Ethiopia. J Environ Manag. 2024;359:121018.
                   doi: 10.1007/BF00994018                              doi: 10.1016/j.jenvman.2024.121018
                42.  Sandamal K, Shashiprabha S, Muttil N, Rathnayake U.   48.  Friedman JH. Multivariate adaptive regression splines.
                   Pavement  roughness  prediction  using  explainable  and   Ann Statis. 1991;19:1-67.
                   supervised machine learning  technique  for long-term      doi: 10.1214/aos/1176347963
                   performance. Sustainability. 2023;15(12):9617.   49.  Garai  S,  Paul  RK,  Yeasin  M,  Paul  AK.  CEEMDAN-
                   doi: 10.3390/su15129617                              based  hybrid  machine  learning  models  for  time
                43.  Ferreira  C.  Gene  expression  programming:  A  new   series forecasting using MARS  algorithm  and PSO-
                   adaptive algorithm for solving problems. Complex Syst.   optimization. Neural Process Lett. 2024;56(2):92.
                   2001;13:87-129.                                      doi: 10.1007/s11063-024-11552-w
                   doi: 10.48550/arXiv.cs/0102027                   50.  Fuladipanah M, Azamathulla HM, Kisi O, Kouhdaragh M,
                44.  Fuladipanah  M,  Shahhosseini A,  Rathnayake  N,  et  al.   Mandala  V.  Quantitative  forecasting  of  bed  sediment
                   In-depth  simulation  of  rainfall-runoff  relationships   load in river engineering: An investigation into machine
                   using machine learning methods. Water Pract Technol.   learning methodologies for complex phenomena. Water
                   2024;19(6):2442-2459.                                Supply. 2024;24(2):585-600.
                   doi: 10.2166/wpt.2024.147                            doi: 10.2166/ws.2024.017
                45.  Perera A, Hazi MD, Upaka R. Comparison of different   51.  Noori  R,  Khakpour  A,  Omidvar  B,  Farokhnia  A.
                   artificial  neural  network  (ANN)  training  algorithms  to   Comparison of ANN and principal component analysis-
                   predict  the  atmospheric  temperature  in  Tabuk,  Saudi   multivariate linear regression models for predicting the
                   Arabia. MAUSAM. 2021;71(2):233-244.                  river flow based on developed discrepancy ratio statistic.
                   doi: 10.54302/mausam.v71i2.22                        Expert Syst Appl. 2010;37(8):5856-5862.
                46.  Agbasi JC, Egbueri JC. Prediction of potentially toxic      doi: 10.1016/j.eswa.2010.02.020
                   elements in water resources using MLP-NN, RBF-NN,   52.  Koskinas A,  Tegos A,  Tsira  P,  et al.  Insights  into  the
                   and ANFIS: A comprehensive review. Environ Sci Pollut   Oroville dam 2017 spillway incident.  Geosciences.
                   Res Int. 2024;31:30370-30398.                        2019;9(1):37.
                   doi: 10.1007/s11356-024-33350-6                      doi: 10.3390/geosciences9010037







































                Volume 22 Issue 6 (2025)                        88                           doi: 10.36922/AJWEP025120081
   89   90   91   92   93   94   95   96   97   98   99