Page 59 - AN-1-1
P. 59

Advanced Neurology                                                          EPAC2 null leads to tauopathy



            Conflict of interest                                  BMB Rep, 54(3): 149–156.

            The authors have no conflicts of interest to declare.     https://doi.org/10.5483/BMBRep.2021.54.3.233
                                                               10.  Zhang X, Huang X, Fang C, et al., 2017, miR-124 Regulates
            Author contributions                                  the Expression of BACE1 in the Hippocampus Under

            Conceptualization: Ling-Qiang Zhu                     Chronic Cerebral Hypoperfusion.  Mol Neurobiol, 54(4):
                                                                  2498–24506.
            Methodology: De-Yi Liu, He-Zhou Huang, Ke Li
                                                                  https://doi.org/10.1007/s12035-016-9845-y
            Resources: De-Yi Liu, He-Zhou Huang, Ke Li         11.  Ittner A, Ittner LM, 2018, Dendritic Tau in Alzheimer’s
            Investigation: De-Yi Liu, He-Zhou Huang, Ke Li        Disease. Neuron, 99(1): 13-27.
            Formal analysis: De-Yi Liu, Youming Lu, Ling-Qiang Zhu      https://doi.org/10.1016/j.neuron.2018.06.003
            Writing – original draft: De-Yi Liu, Ling-Qiang Zhu   12.  Zaldua  N, Gastineau M,  Hoshino  M,  et al.,  2007, Epac
                                                                  signaling pathway involves STEF, a guanine nucleotide
            Writing – review & editing: Ling-Qiang Zhu            exchange factor for Rac, to regulate APP processing. FEBS
                                                                  Lett, 581(30): 5814-5818.
            References
                                                                  https://doi.org/10.1016/j.febslet.2007.11.053
            1.   Gong CX, Liu F, Grundke-Iqbal I, Iqbal K, 2005, Post-          rd
               translational modifications of tau protein in Alzheimer’s   13.  Robichaux WG 3 , Cheng X, 2018, Intracellular cAMP
               disease. J Neural Transm (Vienna), 112(6): 813–838.  sensor EPAC: Physiology, pathophysiology, and therapeutics
                                                                  development. Physiol Rev, 98(2): 919-1053.
               https://doi.org/10.1007/s00702-004-0221-0
                                                                  https://doi.org/10.1152/physrev.00025.2017
            2.   Mandelkow E, 1999, Alzheimer’s disease. The tangled tale of
               tau. Nature, 402(6762): 588–589.                14.  Kimura T, Ishiguro K, Hisanaga S, 2014, Physiological and
                                                                  pathological phosphorylation of tau by Cdk5.  Front Mol
               https://doi.org/10.1038/45095                      Neurosci, 7: 65.
            3.   Iqbal K, Liu F, Gong CX, 2016, Tau and neurodegenerative      https://doi.org/10.3389/fnmol.2014.00065
               disease: The story so far. Nat Rev Neurol, 12(1):15-27.
                                                               15.  Partrick  GN,  Zukerberg  L,  Nikolic,  M,  et al.,  1999,
               https://doi.org/10.1038/nrneurol.2015.225          Conversion  of  p35 to  p25  deregulates Cdk5  activity  and
            4.   de Rooij J, Zwartkruis FJ, Verheijen MH, et al., (1998) Epac   promotes neurodegeneration. Nature, 402(6762): 615–622.
               is a Rap1 guanine-nucleotide-exchange factor directly      https://doi.org/10.1038/35081149
               activated by cyclic AMP. Nature, 396(6710): 474–477.
                                                               16.  Utreras E, Henriquez D, Contreras-Vallejos E,  et al.,
               https://doi.org/10.1038/24884                      2013, Cdk5 regulates Rap1 activity. Neurochem Int, 62(6):
                                                                  848–853.
            5.   Zhang CL, Katoh M, Shibasaki T, et al., 2009, The cAMP
               sensor 2 is a direct tartget of antidiabetic sulfonylurea drugs.      https://doi.org/10.1016/j.neuint.2013.02.011
               Science, 325(5940): 607–610.
                                                               17.  Liu J, Yang J, Xu Y, et al., 2017, Roscovitine, a CDK5 inhibitor,
               https://doi.org/10.1126/science.1172256            alleviates sevoflurane-induced cognitive dysfunction via
            6.   Yang Y, Shu X, Liu D, et al., 2012, EPAC null mutation impairs   regulation tau/GSK3beta and ERK/PPARgamma/CREB
               learning and social interactions via aberrant regulation of   signaling. Cell Physiol Biochem, 44(2): 423–435.
               miR-124 and Zif268 translation. Neuron, 73(4): 774–788.     https://doi.org/10.1159/000485008
               https://doi.org/10.1016/j.neuron.2012.02.003    18.  Kitagawa S, 2019, Experimental manipulation of calpain
            7.   Zhou L, Ma SL, Yeung PK,  et al., 2016, Anxiety and   activity in vitro. Methods Mol Biol, 1915: 209–218.
               depression with neurogenesis defects in exchange protein      https://doi.org/10.1007/978-1-4939-8988-1_16
               directly activated by cAMP 2-deficient mice are ameliorated   19.  Fujita H, Kato T, Watanabe N, et al., 2011, Calpain inhibitors
               by a selective serotonin reuptake inhibitor, Prozac.  Transl   stimulate phagocyte functions via activation of human
               Psychiatry, 6(9): e881.
                                                                  formyl peptide receptors.  Arch Biochem Biophys, 513(1):
               https://doi.org/10.1038/tp.2016.129                51–60.
            8.   Mcphee I, Gibson L, Kewney J, et al., 2005, Cyclic nucleotide      https://doi.org/10.1016/j.abb.2011.06.007
               signalling: A  molecular approach to drug discovery for   20.  Li K, Liu FF, He CX, et al., 2016, Olfactory deprivation hastens
               Alzheimer’s disease. Biochem Soc Trans, 33(6): 1330–1332.
                                                                  alzheimer-like pathologies in a human tau-overexpressed
            9.   Lee K, 2021, Epac: New emerging cAMP-binding protein.   mouse model via activation of cdk5. Mol Neurobiol, 53(1):


            Volume 1 Issue 1 (2022)                         10                        https://doi.org/10.36922/an.v1i1.8
   54   55   56   57   58   59   60   61   62   63   64