Page 75 - ESAM-1-2
P. 75
Engineering Science in
Additive Manufacturing Multi-material additive manufacturing of metals
doi: 10.1016/j.procir.2020.04.098 Mechanical Properties of Additively Manufactured 17-4 PH
Stainless Steel. Texas: University of Texas at Austin; 2018.
208. Chivel Y. New approach to multi-material processing in
selective laser melting. Phys Proced. 2016;83:891-898. 219. Drissi-Daoudi R, Masinelli G, De Formanoir C, Wasmer K,
Jhabvala J, Logé RE. Acoustic emission for the prediction
doi: 10.1016/j.phpro.2016.08.093
of processing regimes in Laser Powder Bed Fusion,
209. Jacob G, Brown CU, Donmez MA, Watson SS, Slotwinski J. and the generation of processing maps. Addit Manuf.
Effects of Powder Recycling on Stainless steel Powder and Built 2023;67:103484.
Material Properties in Metal Powder Bed Fusion Processes.
Technical Report NIST AMS 100-6. Gaithersburg, MD: doi: 10.1016/j.addma.2023.103484
National Institute of Standards and Technology; 2017. 220. Shevchik SA, Le-Quang T, Farahani FV, et al. Laser welding
quality monitoring via graph support vector machine with
210. Weiss C, Haefner CL, Munk J. On the influence of
AlSi10Mg powder recycling behavior in the LPBF process data adaptive kernel. IEEE Access. 2019;7:93108-93122.
and consequences for mechanical properties. JOM. doi: 10.1109/access.2019.2927661
2022;74(3):1188-1199. 221. Wasmer K, Kenel C, Leinenbach C, Shevchik SA. In
doi: 10.1007/s11837-021-05080-4 Situ and Real-Time Monitoring of Powder-Bed AM by
Combining Acoustic Emission and Artificial Intelligence.
211. Koushik T, Shen H, Kan WH, et al. Effective Ti-6Al-4V powder In: Meboldt M, Klahn C, editors. Industrializing Additive
recycling in LPBF additive manufacturing considering Manufacturing - Proceedings of Additive Manufacturing in
powder history. Sustainability. 2023;15(21):15582.
Products and Applications - AMPA2017. Cham: Springer
doi: 10.3390/su152115582 International Publishing; 2018. p. 200-209.
212. Sendino S, Martinez S, Lamikiz A. Characterization of IN718 222. Shevchik S, Le-Quang T, Meylan B, et al. Supervised deep
recycling powder and its effect on LPBF manufactured parts. learning for real-time quality monitoring of laser welding
Procedia CIRP. 2020;94:227-232. with X-ray radiographic guidance. Sci Rep. 2020;10(1):3389.
doi: 10.1016/j.procir.2020.09.043 doi: 10.1038/s41598-020-60294-x
213. Ahmed F, Ali U, Sarker D, et al. Study of powder recycling 223. Koester LW, Taheri H, Bond LJ, Faierson EJ. Acoustic
and its effect on printed parts during laser powder-bed monitoring of additive manu- facturing for damage
fusion of 17-4 PH stainless steel. J Mater Process Technol. and process condition determination. AIP Conf Proc.
2020;278:116522. 2019;2102:020005.
doi: 10.1016/j.jmatprotec.2019.116522 doi: 10.1063/1.5099709
214. He X, Kong D, Zhou Y, et al. Powder recycling effects 224. Shevchik SA, Masinelli G, Kenel C, Leinenbach C, Wasmer K.
on porosity development and mechanical properties of Deep learning for in situ and real-time quality monitoring in
Hastelloy X alloy during laser powder bed fusion process. additive manufacturing using acoustic emission. IEEE Trans
Addit Manuf. 2022;55:102840. Ind Inform. 2019;15(9):5194-5203.
doi: 10.1016/j.addma.2022.102840 doi: 10.1109/TII.2019.2910524
215. Zhang H, Li J, Li Y. Effect of powder recycling on the 225. Masinelli G, Shevchik SA, Pandiyan V, Quang-Le T, Wasmer
organization and mechanical properties of GH4169 alloy by K. Artificial intelligence for monitoring and control of metal
laser metal deposition. Coatings. 2023;13(3):659. additive manufacturing. In: Meboldt M, Klahn C, editors.
Industrializing Additive Manufacturing. Cham: Springer
doi: 10.3390/coatings13030659
International Publishing; 2021. p. 205-220.
216. Popov VV, Katz-Demyanetz A, Garkun A, Bamberger M. 226. Eschner N, Weiser L, Häfner B, Lanza G. Classification of
The effect of powder recycling on the mechanical properties specimen density in Laser powder bed fusion (L-PBF) using
and microstructure of electron beam melted Ti-6Al-4 V in-process structure-borne acoustic process emissions.
specimens. Addit Manuf. 2018;22:834-843.
Addit Manuf. 2020;34:101324.
doi: 10.1016/j.addma.2018.06.003
doi: 10.1016/j.addma.2020.101324
217. Carrion PE, Soltani-Tehrani A, Phan N, Shamsaei N. 227. Ito K, Kusano M, Demura M, Watanabe M. Detection and
Powder recycling effects on the tensile and fatigue behavior
of additively manufactured Ti-6Al-4V parts. JOM. location of microdefects during selective laser melting by
wireless acoustic emission measurement. Addit Manuf.
2019;71(3):963-973.
2021;40:101915.
doi: 10.1007/s11837-018-3248-7
228. Taheri H, Koester LW, Bigelow TA, Faierson EJ, Bond LJ.
218. Nezhadfar PD, Soltani-Tehrani A, Sterling A, Tsolas N, In situ additive manufacturing process monitoring with an
Shamsaei N. The Effects of Powder Recycling on the acoustic technique: Clustering performance evaluation using
Volume 1 Issue 2 (2025) 43 doi: 10.36922/ESAM025180010

