Page 75 - ESAM-1-2
P. 75

Engineering Science in
            Additive Manufacturing                                          Multi-material additive manufacturing of metals



               doi: 10.1016/j.procir.2020.04.098                  Mechanical Properties of Additively Manufactured 17-4 PH
                                                                  Stainless Steel. Texas: University of Texas at Austin; 2018.
            208. Chivel Y. New approach to multi-material processing in
               selective laser melting. Phys Proced. 2016;83:891-898.  219. Drissi-Daoudi R, Masinelli G, De Formanoir C, Wasmer K,
                                                                  Jhabvala J, Logé RE. Acoustic emission for the prediction
               doi: 10.1016/j.phpro.2016.08.093
                                                                  of processing regimes in Laser Powder Bed Fusion,
            209. Jacob G, Brown CU, Donmez MA, Watson SS, Slotwinski J.   and the generation of processing maps.  Addit Manuf.
               Effects of Powder Recycling on Stainless steel Powder and Built   2023;67:103484.
               Material Properties in Metal Powder Bed Fusion Processes.
               Technical Report NIST AMS 100-6. Gaithersburg, MD:      doi: 10.1016/j.addma.2023.103484
               National Institute of Standards and Technology; 2017.  220. Shevchik SA, Le-Quang T, Farahani FV, et al. Laser welding
                                                                  quality monitoring via graph support vector machine with
            210. Weiss C, Haefner CL, Munk J. On the influence of
               AlSi10Mg powder recycling behavior in the LPBF process   data adaptive kernel. IEEE Access. 2019;7:93108-93122.
               and  consequences  for  mechanical  properties.  JOM.      doi: 10.1109/access.2019.2927661
               2022;74(3):1188-1199.                           221. Wasmer K, Kenel C, Leinenbach C, Shevchik SA.  In
               doi: 10.1007/s11837-021-05080-4                    Situ  and  Real-Time  Monitoring  of  Powder-Bed  AM  by
                                                                  Combining Acoustic Emission and Artificial Intelligence.
            211. Koushik T, Shen H, Kan WH, et al. Effective Ti-6Al-4V powder   In:  Meboldt  M,  Klahn  C,  editors.  Industrializing Additive
               recycling in LPBF additive manufacturing considering   Manufacturing  -  Proceedings of Additive Manufacturing in
               powder history. Sustainability. 2023;15(21):15582.
                                                                  Products and Applications  -  AMPA2017. Cham: Springer
               doi: 10.3390/su152115582                           International Publishing; 2018. p. 200-209.
            212. Sendino S, Martinez S, Lamikiz A. Characterization of IN718   222. Shevchik S, Le-Quang T, Meylan B, et al. Supervised deep
               recycling powder and its effect on LPBF manufactured parts.   learning for real-time quality monitoring of laser welding
               Procedia CIRP. 2020;94:227-232.                    with X-ray radiographic guidance. Sci Rep. 2020;10(1):3389.
               doi: 10.1016/j.procir.2020.09.043                  doi: 10.1038/s41598-020-60294-x
            213. Ahmed F, Ali U, Sarker D, et al. Study of powder recycling   223. Koester LW, Taheri H, Bond LJ, Faierson EJ. Acoustic
               and its effect on printed parts during laser powder-bed   monitoring of  additive  manu-  facturing  for  damage
               fusion of 17-4 PH stainless steel. J Mater Process Technol.   and process condition determination.  AIP Conf Proc.
               2020;278:116522.                                   2019;2102:020005.
               doi: 10.1016/j.jmatprotec.2019.116522              doi: 10.1063/1.5099709
            214. He X, Kong D, Zhou Y,  et  al. Powder recycling effects   224. Shevchik SA, Masinelli G, Kenel C, Leinenbach C, Wasmer K.
               on porosity development and mechanical properties of   Deep learning for in situ and real-time quality monitoring in
               Hastelloy X alloy during laser powder bed fusion process.   additive manufacturing using acoustic emission. IEEE Trans
               Addit Manuf. 2022;55:102840.                       Ind Inform. 2019;15(9):5194-5203.
               doi: 10.1016/j.addma.2022.102840                   doi: 10.1109/TII.2019.2910524
            215. Zhang H, Li J, Li Y. Effect of powder recycling on the   225. Masinelli G, Shevchik SA, Pandiyan V, Quang-Le T, Wasmer
               organization and mechanical properties of GH4169 alloy by   K. Artificial intelligence for monitoring and control of metal
               laser metal deposition. Coatings. 2023;13(3):659.  additive manufacturing. In: Meboldt M, Klahn C, editors.
                                                                  Industrializing Additive Manufacturing. Cham: Springer
               doi: 10.3390/coatings13030659
                                                                  International Publishing; 2021. p. 205-220.
            216. Popov VV, Katz-Demyanetz A, Garkun A, Bamberger M.   226. Eschner N, Weiser L, Häfner B, Lanza G. Classification of
               The effect of powder recycling on the mechanical properties   specimen density in Laser powder bed fusion (L-PBF) using
               and microstructure of electron beam melted Ti-6Al-4 V   in-process structure-borne acoustic process emissions.
               specimens. Addit Manuf. 2018;22:834-843.
                                                                  Addit Manuf. 2020;34:101324.
               doi: 10.1016/j.addma.2018.06.003
                                                                  doi: 10.1016/j.addma.2020.101324
            217. Carrion PE, Soltani-Tehrani A, Phan N, Shamsaei N.   227. Ito K, Kusano M, Demura M, Watanabe M. Detection and
               Powder recycling effects on the tensile and fatigue behavior
               of additively manufactured Ti-6Al-4V parts.  JOM.   location of microdefects during selective laser melting by
                                                                  wireless acoustic emission measurement.  Addit Manuf.
               2019;71(3):963-973.
                                                                  2021;40:101915.
               doi: 10.1007/s11837-018-3248-7
                                                               228. Taheri H, Koester LW, Bigelow TA, Faierson EJ, Bond LJ.
            218. Nezhadfar PD, Soltani-Tehrani A, Sterling A, Tsolas  N,   In situ additive manufacturing process monitoring with an
               Shamsaei N.  The  Effects  of  Powder  Recycling  on  the   acoustic technique: Clustering performance evaluation using


            Volume 1 Issue 2 (2025)                         43                         doi: 10.36922/ESAM025180010
   70   71   72   73   74   75   76   77   78   79   80