Page 49 - ESAM-1-4
P. 49

Engineering Science in
            Additive Manufacturing                                              Machine learning for biomedical metal AM



               entropy alloys. Virtual Phys Prototyp. 2025;20(1):e2524524.  learning to investigate the composition-microstructure-
                                                                  mechanical  property  relationships  in  titanium  alloys.
               doi: 10.1080/17452759.2025.2524524
                                                                  J Mater Process Technol. 2023;311:117800.
            68.  Gor M, Dobriyal A, Wankhede V, et al. Density prediction
               in powder bed fusion additive manufacturing: Machine      doi: 10.1016/j.jmatprotec.2022.117800
               learning-based techniques. Appl Sci. 2022;12(14):7271.  79.  Calvat M, Bean C, Anjaria D,  et al. Learning metal
               doi: 10.3390/app12147271                           microstructural heterogeneity through spatial mapping
                                                                  of diffraction latent space  features.  NPJ Computat Mater.
            69.  Chan KS, Koike M, Mason RL, Okabe T. Fatigue life of   2025;11(1):284.
               titanium alloys fabricated by additive layer manufacturing
               techniques for dental implants. Metallurgical Mater Trans A.      doi: 10.1038/s41524-025-01770-8
               2013;44(2):1010-1022.                           80.  Chi J, Huang X, He D, et al. Obtaining strength and ductility
               doi: 10.1007/s11661-012-1470-4                     synergy for directed energy deposited Ti17 alloys by
                                                                  machine learning. Mater Lett. 2024;356:135537.
            70.  Dawood HI, Mohammed KS, Rahmat A, Uday MB. The
               influence of the surface roughness on the microstructures      doi: 10.1016/j.matlet.2023.135537
               and mechanical properties of 6061 aluminium alloy using   81.  Wang H, Li B, Zhang W, Xuan F. Microstructural feature-
               friction stir welding. Surf Coat Technol. 2015;270:272-283.  driven machine learning for predicting mechanical
               doi: 10.1016/j.surfcoat.2015.02.045                tensile  strength  of  laser  powder  bed  fusion  (L-PBF)
                                                                  additively manufactured Ti6Al4V alloy.  Eng Fract Mech.
            71.  Jiang X, Lu J, Zhao N, Chen Z, Zhao Z. A review of wear   2024;295:109788.
               in additive manufacturing: Wear mechanism, materials, and
               process. Lubricants. 2024;12(9):321.               doi: 10.1016/j.engfracmech.2023.109788
               doi: 10.3390/lubricants12090321                 82.  Liu S, Stebner AP, Kappes BB, Zhang X. Machine learning
                                                                  for knowledge transfer across multiple metals additive
            72.  Pegues J, Roach M, Scott Williamson R, Shamsaei N. Surface   manufacturing printers. Addit Manuf. 2021;39:101877.
               roughness effects on the fatigue strength of additively
               manufactured Ti-6Al-4V. Int J Fatigue. 2018;116:543-552.     doi: 10.1016/j.addma.2021.101877
               doi: 10.1016/j.ijfatigue.2018.07.013            83.  Fang L, Cheng L, Glerum JA, Bennett J, Cao J, Wagner GJ.
                                                                  Data-driven analysis of process, structure, and properties
            73.  Koo J, Park E, Baek AMC, Kim N. The Research of Surface   of  additively  manufactured  Inconel  718  thin  walls.  NPJ
               Roughness Prediction with Machine Learning According   Computat Mater. 2022;8(1):126.
               to Process Parameters in Laser Powder Bed Fusion. Berlin:
               Springer Singapore; 2022. p. 62-65.                doi: 10.1038/s41524-022-00808-5
            74.  Xia C, Pan Z, Polden J, Li H, Xu Y, Chen S. Modelling   84.  Liu YT, Chua C, Soh V, Sun Z, Chua CK, Sing SL. Revealing
               and prediction of surface roughness in wire arc additive   the underlying mechanism in controlling Young’s modulus of
               manufacturing using machine learning.  J  Intell Manuf.   additively manufactured Ti-6Al-4V using fuzzified machine
               2022;33(5):1467-1482.                              learning. Virtual Phys Prototyp. 2025;20(1):e2443103.
               doi: 10.1007/s10845-020-01725-4                    doi: 10.1080/17452759.2024.2443103
            75.  So MS, Seo GJ, Kim DB, Shin JH. Prediction of metal   85.  Dong S, Wang Y, Li J, Li Y, Wang L, Zhang J. Machine learning
               additively manufactured surface roughness using deep   aided prediction and design for the mechanical properties of
               neural network. Sensors. 2022;22(20):7955.         magnesium alloys. Metals Mater Int. 2024;30(3):593-606.
               doi: 10.3390/s22207955                             doi: 10.1007/s12540-023-01531-6
            76.  Mukherjee T, Elmer JW, Wei HL,  et al. Control of grain   86.  Akbari P, Zamani M, Mostafaei A. Machine learning
               structure, phases, and defects in additive manufacturing   prediction of mechanical properties in metal additive
               of high-performance metallic components. Prog Mater Sci.   manufacturing. Addit Manuf. 2024;91:104320.
               2023;138:101153.                                   doi: 10.1016/j.addma.2024.104320
               doi: 10.1016/j.pmatsci.2023.101153              87.  Lian  Z, Li M,  Lu  W.  Fatigue  life  prediction  of  aluminum
            77.  Yan F, Xiong W, Faierson E. Grain structure control of   alloy via knowledge-based machine learning. Int J Fatigue.
               additively manufactured metallic materials.  Materials.   2022;157:106716.
               2017;10(11):1260.                                  doi: 10.1016/j.ijfatigue.2021.106716
               doi: 10.3390/ma10111260
                                                               88.  Johnsen AR, Petersen JE, Pedersen MM, Yıldırım HC. Factors
            78.  Zhang F, Huang K, Zhao K, et al. Directed energy deposition   affecting the fatigue strength of additively manufactured
               combining  high-throughput technology and  machine   Ti-6Al-4V parts. Weld World. 2023;68(2):361-409.


            Volume 1 Issue 4 (2025)                         27                         doi: 10.36922/ESAM025440031
   44   45   46   47   48   49   50   51   52   53   54