Page 48 - ESAM-1-4
P. 48

Engineering Science in
            Additive Manufacturing                                              Machine learning for biomedical metal AM



               doi: 10.1007/s11432-020-3132-4                  57.  Li Y, Tan J, Qian C, Liu X, Nie R. Review of machine learning-
                                                                  assisted multi-property design of high-entropy alloys: Phase
            46.  Sarkar JP, Saha I, Chakraborty S, Maulik U. Machine
               learning integrated credibilistic semi supervised clustering   structure, mechanical, tribological, corrosion, and hydrogen
               for categorical data. Appl Soft Comput. 2020;86:105871.  storage properties. J Mater Res Technol. 2025;37:3350-3377.
                                                                  doi: 10.1016/j.jmrt.2025.07.005
               doi: 10.1016/j.asoc.2019.105871
                                                               58.  Hu  M,  Tan  Q,  Knibbe  R,  et al.  Recent  applications  of
            47.  Hammarström H, Borin L. Unsupervised learning of
               morphology. Comput Linguist. 2011;37(2):309-350.   machine learning in alloy design: A review. Mater Sci Eng R
                                                                  Rep. 2023;155:100746.
               doi: 10.1162/COLI_a_00050
                                                                  doi: 10.1016/j.mser.2023.100746
            48.  Nurhalizah RS, Ardianto R, Purwono P. Analisis supervised
               dan unsupervised learning pada machine learning:   59.  Jin L, Zhai X, Wang K, et al. Big data, machine learning,
                                                                  and digital twin assisted additive manufacturing: A review.
               Systematic literature review.  J  Ilmu Komput Inform.
               2024;4(1):61-72.                                   Mater Des. 2024;244:113086.
                                                                  doi: 10.1016/j.matdes.2024.113086
               doi: 10.54082/jiki.168
                                                               60.  Zhu K, Fuh JYH, Lin X. Metal-based additive manufacturing
            49.  Abd-Elaziem W, Darwish MA, Hamada A, Daoush WM.
               Titanium-Based alloys and composites for orthopedic   condition monitoring: A  review on machine learning
               implants Applications: A comprehensive review. Mater Des.   based approaches.  IEEE/ASME Trans Mechatronics.
                                                                  2022;27(5):2495-2510.
               2024;241:112850.
                                                                  doi: 10.1109/TMECH.2021.3110818
               doi: 10.1016/j.matdes.2024.112850
                                                               61.  Chen K, Zhang P, Yan H, et al. A review of machine learning
            50.  Aromiwura AA, Settle T, Umer M, et al. Artificial intelligence   in additive manufacturing: design and process.  Int J Adv
               in cardiac computed tomography.  Prog Cardiovasc Dis.
               2023;81:54-77.                                     Manuf Technol. 2024;135(3):1051-1087.
                                                                  doi: 10.1007/s00170-024-14543-2
               doi: 10.1016/j.pcad.2023.09.001
                                                               62.  Inayathullah S, Buddala R. Review of machine learning
            51.  Emmert-Streib  F, Dehmer M.  Evaluation  of regression   applications in additive manufacturing.  Results Eng.
               models: Model assessment, model selection and      2025;25:103676.
               generalization error.  Mach Learn Knowl Extract.
               2019;1(1):521-551.                                 doi: 10.1016/j.rineng.2024.103676
               doi: 10.3390/make1010032                        63.  Kim H, Kim KH, Jeong J, Jeon H, Jung ID. Advancing
                                                                  intelligent additive manufacturing: Machine learning
            52.  Saxena A, Prasad M, Gupta A, et al. A review of clustering   approaches for process optimization and quality control. Int
               techniques  and  developments.  Neurocomputing.
               2017;267:664-681.                                  J AI Mater Des. 2025;2(2):27-55.
                                                                  doi: 10.36922/ijamd025130010
               doi: 10.1016/j.neucom.2017.06.053
                                                               64.  Li Z, Qiu J, Xu H, et al. Characteristics of β-type Ti-41Nb
            53.  Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy   alloy produced by laser powder bed fusion: Microstructure,
               design, processing, and performance of β Titanium alloys as   mechanical properties and in vitro biocompatibility. J Mater
               biomedical materials. Int Mater Rev. 2021;66(2):114-139.
                                                                  Sci Technol. 2022;124:260-272.
               doi: 10.1080/09506608.2020.1735829
                                                                  doi: 10.1016/j.jmst.2022.02.026
            54.  Li H, Yang X. Effect of surface morphologies on the in vitro
               and in vivo properties of biomedical metallic materials. ACS   65.  Bartolomeu F, Faria S, Carvalho O, et al. Predictive models for
                                                                  physical and mechanical properties of Ti6Al4V produced by
               Biomater Sci Eng. 2024;10(10):6017-6028.
                                                                  Selective Laser Melting. Mater Sci Eng A. 2016;663:181-192.
               doi: 10.1021/acsbiomaterials.4c00942
                                                                  doi: 10.1016/j.msea.2016.03.113
            55.  Wang J, Dou J, Wang Z, Hu C, Yu H, Chen C. Research   66.  Maitra V, Shi J, Lu C. Robust prediction and validation
               progress of biodegradable magnesium-based biomedical   of as-built density of Ti-6Al-4V parts manufactured via
               materials: A review. J Alloys Compd. 2022;923:166377.
                                                                  selective laser melting using a machine learning approach.
               doi: 10.1016/j.jallcom.2022.166377                 J Manuf Process. 2022;78:183-201.
            56.  Guo AXY, Cheng L, Zhan S, et al. Biomedical applications      doi: 10.1016/j.jmapro.2022.04.020
               of the powder‐based 3D printed titanium alloys: A review.   67.  Jiang D, Luo M, Liu C,  et al. 3D Printing parameter
               J Mater Sci Technol. 2022;125:252-264.
                                                                  optimisation combined with heat treatment for achieving
               doi: 10.1016/j.jmst.2021.11.084                    high density and enhanced performance in refractory high-


            Volume 1 Issue 4 (2025)                         26                         doi: 10.36922/ESAM025440031
   43   44   45   46   47   48   49   50   51   52   53