Page 48 - ESAM-1-4
P. 48
Engineering Science in
Additive Manufacturing Machine learning for biomedical metal AM
doi: 10.1007/s11432-020-3132-4 57. Li Y, Tan J, Qian C, Liu X, Nie R. Review of machine learning-
assisted multi-property design of high-entropy alloys: Phase
46. Sarkar JP, Saha I, Chakraborty S, Maulik U. Machine
learning integrated credibilistic semi supervised clustering structure, mechanical, tribological, corrosion, and hydrogen
for categorical data. Appl Soft Comput. 2020;86:105871. storage properties. J Mater Res Technol. 2025;37:3350-3377.
doi: 10.1016/j.jmrt.2025.07.005
doi: 10.1016/j.asoc.2019.105871
58. Hu M, Tan Q, Knibbe R, et al. Recent applications of
47. Hammarström H, Borin L. Unsupervised learning of
morphology. Comput Linguist. 2011;37(2):309-350. machine learning in alloy design: A review. Mater Sci Eng R
Rep. 2023;155:100746.
doi: 10.1162/COLI_a_00050
doi: 10.1016/j.mser.2023.100746
48. Nurhalizah RS, Ardianto R, Purwono P. Analisis supervised
dan unsupervised learning pada machine learning: 59. Jin L, Zhai X, Wang K, et al. Big data, machine learning,
and digital twin assisted additive manufacturing: A review.
Systematic literature review. J Ilmu Komput Inform.
2024;4(1):61-72. Mater Des. 2024;244:113086.
doi: 10.1016/j.matdes.2024.113086
doi: 10.54082/jiki.168
60. Zhu K, Fuh JYH, Lin X. Metal-based additive manufacturing
49. Abd-Elaziem W, Darwish MA, Hamada A, Daoush WM.
Titanium-Based alloys and composites for orthopedic condition monitoring: A review on machine learning
implants Applications: A comprehensive review. Mater Des. based approaches. IEEE/ASME Trans Mechatronics.
2022;27(5):2495-2510.
2024;241:112850.
doi: 10.1109/TMECH.2021.3110818
doi: 10.1016/j.matdes.2024.112850
61. Chen K, Zhang P, Yan H, et al. A review of machine learning
50. Aromiwura AA, Settle T, Umer M, et al. Artificial intelligence in additive manufacturing: design and process. Int J Adv
in cardiac computed tomography. Prog Cardiovasc Dis.
2023;81:54-77. Manuf Technol. 2024;135(3):1051-1087.
doi: 10.1007/s00170-024-14543-2
doi: 10.1016/j.pcad.2023.09.001
62. Inayathullah S, Buddala R. Review of machine learning
51. Emmert-Streib F, Dehmer M. Evaluation of regression applications in additive manufacturing. Results Eng.
models: Model assessment, model selection and 2025;25:103676.
generalization error. Mach Learn Knowl Extract.
2019;1(1):521-551. doi: 10.1016/j.rineng.2024.103676
doi: 10.3390/make1010032 63. Kim H, Kim KH, Jeong J, Jeon H, Jung ID. Advancing
intelligent additive manufacturing: Machine learning
52. Saxena A, Prasad M, Gupta A, et al. A review of clustering approaches for process optimization and quality control. Int
techniques and developments. Neurocomputing.
2017;267:664-681. J AI Mater Des. 2025;2(2):27-55.
doi: 10.36922/ijamd025130010
doi: 10.1016/j.neucom.2017.06.053
64. Li Z, Qiu J, Xu H, et al. Characteristics of β-type Ti-41Nb
53. Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy alloy produced by laser powder bed fusion: Microstructure,
design, processing, and performance of β Titanium alloys as mechanical properties and in vitro biocompatibility. J Mater
biomedical materials. Int Mater Rev. 2021;66(2):114-139.
Sci Technol. 2022;124:260-272.
doi: 10.1080/09506608.2020.1735829
doi: 10.1016/j.jmst.2022.02.026
54. Li H, Yang X. Effect of surface morphologies on the in vitro
and in vivo properties of biomedical metallic materials. ACS 65. Bartolomeu F, Faria S, Carvalho O, et al. Predictive models for
physical and mechanical properties of Ti6Al4V produced by
Biomater Sci Eng. 2024;10(10):6017-6028.
Selective Laser Melting. Mater Sci Eng A. 2016;663:181-192.
doi: 10.1021/acsbiomaterials.4c00942
doi: 10.1016/j.msea.2016.03.113
55. Wang J, Dou J, Wang Z, Hu C, Yu H, Chen C. Research 66. Maitra V, Shi J, Lu C. Robust prediction and validation
progress of biodegradable magnesium-based biomedical of as-built density of Ti-6Al-4V parts manufactured via
materials: A review. J Alloys Compd. 2022;923:166377.
selective laser melting using a machine learning approach.
doi: 10.1016/j.jallcom.2022.166377 J Manuf Process. 2022;78:183-201.
56. Guo AXY, Cheng L, Zhan S, et al. Biomedical applications doi: 10.1016/j.jmapro.2022.04.020
of the powder‐based 3D printed titanium alloys: A review. 67. Jiang D, Luo M, Liu C, et al. 3D Printing parameter
J Mater Sci Technol. 2022;125:252-264.
optimisation combined with heat treatment for achieving
doi: 10.1016/j.jmst.2021.11.084 high density and enhanced performance in refractory high-
Volume 1 Issue 4 (2025) 26 doi: 10.36922/ESAM025440031

