Page 47 - ESAM-1-4
P. 47

Engineering Science in
            Additive Manufacturing                                              Machine learning for biomedical metal AM



               surface  modification  research.  Mater Sci Addit Manuf.   34.  Qin  Y,  Wen P, Guo  H,  et al.  Additive  manufacturing  of
               2024;3(1):2753.                                    biodegradable metals: Current research status and future
                                                                  perspectives. Acta Biomater. 2019;98:3-22.
               doi: 10.36922/msam.2753
            24.  Kumar P, Sawant MS, Jain NK, Gupta S. Study of mechanical      doi: 10.1016/j.actbio.2019.04.046
               characteristics of additively manufactured Co-Cr-Mo-  35.  Davoodi E, Montazerian H, Mirhakimi AS, et al. Additively
               2/4/6Ti alloys for knee implant material. CIRP J Manuf Sci   manufactured metallic biomaterials.  Bioact Mater.
               Technol. 2022;39:261-275.                          2022;15:214-249.
               doi: 10.1016/j.cirpj.2022.08.015                   doi: 10.1016/j.bioactmat.2021.12.027
            25.  Wang Z, Yan Y, Wang Y, Su Y, Qiao L. Lifecycle of cobalt-  36.  Tang Z, Peng X, Li K, Metaxas DN. Towards efficient U-nets:
               based alloy for artificial joints: From bulk material to   A coupled and quantized approach. IEEE Trans Pattern Anal
               nanoparticles and ions due to bio-tribocorrosion. J Mater   Mach Intell. 2020;42(8):2038-2050.
               Sci Technol. 2020;46:98-106.
                                                                  doi: 10.1109/TPAMI.2019.2907634
               doi: 10.1016/j.jmst.2019.12.010
                                                               37.  Janiesch C, Zschech P, Heinrich K. Machine learning and
            26.  Kong D, Dong C, Wei S,  et al. About metastable cellular   deep learning. Electron Mark. 2021;31(3):685-695.
               structure in additively manufactured austenitic stainless
               steels. Addit Manuf. 2021;38:101804.               doi: 10.1007/s12525-021-00475-2
               doi: 10.1016/j.addma.2020.101804                38.  Louridas P, Ebert C. Machine learning.  IEEE Softw.
                                                                  2016;33(5):110-115.
            27.  Abd-Elaziem W, Elkatatny S, Sebaey TA, Darwish MA, Abd
               El-Baky MA, Hamada A. Machine learning for advancing      doi: 10.1109/MS.2016.114
               laser powder bed fusion of stainless steel.  J  Mater Res   39.  Liu J, Ye J, Izquierdo DS, Vinel A, Shamsaei N, Shao S.
               Technol. 2024;30:4986-5016.                        A review of machine learning techniques for process and
               doi: 10.1016/j.jmrt.2024.04.130                    performance optimization in laser beam powder bed fusion
                                                                  additive manufacturing. J Intell Manuf. 2022;34:1-27.
            28.  Guo Y, Sun M, Zhang W, Wang L. Machine learning in
               enhancing corrosion resistance of magnesium alloys:      doi: 10.1007/s10845-022-02012-0
               A comprehensive review. Metals. 2023;13(10):1790.  40.  Rui Z, Liu J, Shi Y, Wang D. Additive manufacturing method
               doi: 10.3390/met13101790                           of lattice structure based on material manufacturing
                                                                  performance driven: Using machine learning to optimize
            29.  Li K, Ji C, Bai S, Jiang B, Pan F. Selective laser melting of   manufacturing process. Addit Manuf Front. 2025:200258.
               magnesium alloys: Necessity, formability, performance,
               optimization and applications.  J  Mater  Sci  Technol.      doi: 10.1016/j.amf.2025.200258
               2023;154:65-93.                                 41.  Calderon CE, Plata JJ, Toher C, et al. The AFLOW standard
               doi: 10.1016/j.jmst.2022.12.053                    for high-throughput materials science calculations.
                                                                  Computat Mater Sci. 2015;108:233-238.
            30.  Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming
               the dependence on animal models for osteoarthritis      doi: 10.1016/j.commatsci.2015.07.019
               therapeutics - the promises and prospects of in vitro models.   42.  Kirklin S, Saal JE, Meredig B,  et al. The open quantum
               Adv Healthc Mater. 2021;10(20):e2100961.           materials database (OQMD): Assessing the accuracy of DFT
               doi: 10.1002/adhm.202100961                        formation energies. NPJ Computat Mater. 2015;1(1):15010.
            31.  Li HF, Shi ZZ, Wang LN. Opportunities and challenges      doi: 10.1038/npjcompumats.2015.10
               of biodegradable Zn-based alloys.  J  Mater Sci Technol.   43.  Brykov MN, Petryshynets I, Pruncu CI,  et al. Machine
               2020;46:136-138.                                   learning modelling and feature engineering in seismology
               doi: 10.1016/j.jmst.2019.12.014                    experiment. Sensors (Basel). 2020;20(15):4228.
            32.  Heiden M. Magnesium, iron and zinc alloys, the trifecta of      doi: 10.3390/s20154228
               bioresorbable orthopaedic and vascular implantation  -  a   44.  Garg M, Goel A. Preserving integrity in online assessment
               review. J Biotechnol Biomater. 2015;5:2.           using feature engineering and machine learning. Expert Syst
               doi: 10.4172/2155-952X.1000178                     Appl. 2023;225:120111.
            33.  Wen P, Qin Y, Chen Y, et al. Laser additive manufacturing of      doi: 10.1016/j.eswa.2023.120111
               Zn porous scaffolds: Shielding gas flow, surface quality and   45.  Xu  M,  Guo LZ.  Learning  from  group  supervision:  The
               densification. J Mater Sci Technol. 2019;35(2):368-376.
                                                                  impact of supervision deficiency on multi-label learning. Sci
               doi: 10.1016/j.jmst.2018.09.065                    China Inform Sci. 2021;64(3):130101.


            Volume 1 Issue 4 (2025)                         25                         doi: 10.36922/ESAM025440031
   42   43   44   45   46   47   48   49   50   51   52