Page 47 - ESAM-1-4
P. 47
Engineering Science in
Additive Manufacturing Machine learning for biomedical metal AM
surface modification research. Mater Sci Addit Manuf. 34. Qin Y, Wen P, Guo H, et al. Additive manufacturing of
2024;3(1):2753. biodegradable metals: Current research status and future
perspectives. Acta Biomater. 2019;98:3-22.
doi: 10.36922/msam.2753
24. Kumar P, Sawant MS, Jain NK, Gupta S. Study of mechanical doi: 10.1016/j.actbio.2019.04.046
characteristics of additively manufactured Co-Cr-Mo- 35. Davoodi E, Montazerian H, Mirhakimi AS, et al. Additively
2/4/6Ti alloys for knee implant material. CIRP J Manuf Sci manufactured metallic biomaterials. Bioact Mater.
Technol. 2022;39:261-275. 2022;15:214-249.
doi: 10.1016/j.cirpj.2022.08.015 doi: 10.1016/j.bioactmat.2021.12.027
25. Wang Z, Yan Y, Wang Y, Su Y, Qiao L. Lifecycle of cobalt- 36. Tang Z, Peng X, Li K, Metaxas DN. Towards efficient U-nets:
based alloy for artificial joints: From bulk material to A coupled and quantized approach. IEEE Trans Pattern Anal
nanoparticles and ions due to bio-tribocorrosion. J Mater Mach Intell. 2020;42(8):2038-2050.
Sci Technol. 2020;46:98-106.
doi: 10.1109/TPAMI.2019.2907634
doi: 10.1016/j.jmst.2019.12.010
37. Janiesch C, Zschech P, Heinrich K. Machine learning and
26. Kong D, Dong C, Wei S, et al. About metastable cellular deep learning. Electron Mark. 2021;31(3):685-695.
structure in additively manufactured austenitic stainless
steels. Addit Manuf. 2021;38:101804. doi: 10.1007/s12525-021-00475-2
doi: 10.1016/j.addma.2020.101804 38. Louridas P, Ebert C. Machine learning. IEEE Softw.
2016;33(5):110-115.
27. Abd-Elaziem W, Elkatatny S, Sebaey TA, Darwish MA, Abd
El-Baky MA, Hamada A. Machine learning for advancing doi: 10.1109/MS.2016.114
laser powder bed fusion of stainless steel. J Mater Res 39. Liu J, Ye J, Izquierdo DS, Vinel A, Shamsaei N, Shao S.
Technol. 2024;30:4986-5016. A review of machine learning techniques for process and
doi: 10.1016/j.jmrt.2024.04.130 performance optimization in laser beam powder bed fusion
additive manufacturing. J Intell Manuf. 2022;34:1-27.
28. Guo Y, Sun M, Zhang W, Wang L. Machine learning in
enhancing corrosion resistance of magnesium alloys: doi: 10.1007/s10845-022-02012-0
A comprehensive review. Metals. 2023;13(10):1790. 40. Rui Z, Liu J, Shi Y, Wang D. Additive manufacturing method
doi: 10.3390/met13101790 of lattice structure based on material manufacturing
performance driven: Using machine learning to optimize
29. Li K, Ji C, Bai S, Jiang B, Pan F. Selective laser melting of manufacturing process. Addit Manuf Front. 2025:200258.
magnesium alloys: Necessity, formability, performance,
optimization and applications. J Mater Sci Technol. doi: 10.1016/j.amf.2025.200258
2023;154:65-93. 41. Calderon CE, Plata JJ, Toher C, et al. The AFLOW standard
doi: 10.1016/j.jmst.2022.12.053 for high-throughput materials science calculations.
Computat Mater Sci. 2015;108:233-238.
30. Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming
the dependence on animal models for osteoarthritis doi: 10.1016/j.commatsci.2015.07.019
therapeutics - the promises and prospects of in vitro models. 42. Kirklin S, Saal JE, Meredig B, et al. The open quantum
Adv Healthc Mater. 2021;10(20):e2100961. materials database (OQMD): Assessing the accuracy of DFT
doi: 10.1002/adhm.202100961 formation energies. NPJ Computat Mater. 2015;1(1):15010.
31. Li HF, Shi ZZ, Wang LN. Opportunities and challenges doi: 10.1038/npjcompumats.2015.10
of biodegradable Zn-based alloys. J Mater Sci Technol. 43. Brykov MN, Petryshynets I, Pruncu CI, et al. Machine
2020;46:136-138. learning modelling and feature engineering in seismology
doi: 10.1016/j.jmst.2019.12.014 experiment. Sensors (Basel). 2020;20(15):4228.
32. Heiden M. Magnesium, iron and zinc alloys, the trifecta of doi: 10.3390/s20154228
bioresorbable orthopaedic and vascular implantation - a 44. Garg M, Goel A. Preserving integrity in online assessment
review. J Biotechnol Biomater. 2015;5:2. using feature engineering and machine learning. Expert Syst
doi: 10.4172/2155-952X.1000178 Appl. 2023;225:120111.
33. Wen P, Qin Y, Chen Y, et al. Laser additive manufacturing of doi: 10.1016/j.eswa.2023.120111
Zn porous scaffolds: Shielding gas flow, surface quality and 45. Xu M, Guo LZ. Learning from group supervision: The
densification. J Mater Sci Technol. 2019;35(2):368-376.
impact of supervision deficiency on multi-label learning. Sci
doi: 10.1016/j.jmst.2018.09.065 China Inform Sci. 2021;64(3):130101.
Volume 1 Issue 4 (2025) 25 doi: 10.36922/ESAM025440031

