Page 50 - ESAM-1-4
P. 50

Engineering Science in
            Additive Manufacturing                                              Machine learning for biomedical metal AM



               doi: 10.1007/s40194-023-01604-5                    doi: 10.1007/s41230-024-3145-3
            89.  Zhan Z, Hu W, Meng Q. Data-driven fatigue life prediction   99.  Liu D, Wang Y. Metal additive manufacturing process design
               in additive manufactured titanium alloy: A  damage   based on physics constrained neural networks and multi-
               mechanics  based  machine  learning  framework.  Eng Fract   objective Bayesian optimization. Manuf Lett. 2022;33:817-827.
               Mechan. 2021;252:107850.
                                                                  doi: 10.1016/j.mfglet.2022.07.101
               doi: 10.1016/j.engfracmech.2021.107850
                                                               100. Ma J, Cao B, Dong S, et al. MLMD: A programming-free
            90.  Zhang M, Sun CN, Zhang X, et al. High cycle fatigue life   AI platform to predict and design materials. NPJ Computat
               prediction of laser additive manufactured stainless steel:   Mater. 2024;10(1):59.
               A machine learning approach. Int J Fatigue. 2019;128:105194.
                                                                  doi: 10.1038/s41524-024-01243-4
               doi: 10.1016/j.ijfatigue.2019.105194
                                                               101. Hou Yi C, Jianzhao W, Xinzhi W, Wentao Y. Process
            91.  Shen T, Zhang W, Li B. Machine learning-enabled predictions   parameter optimization of metal additive manufacturing:
               of as-built relative density and high-cycle fatigue life of   A review and outlook. J Mater Inform. 2022;2(4):16.
               Ti6Al4V alloy additively manufactured by laser powder bed
               fusion. Mater Today Commun. 2023;37:107286.        doi: 10.20517/jmi.2022.18
               doi: 10.1016/j.mtcomm.2023.107286               102. Grbcic L, Müller J, de Jong WA. Efficient inverse design
                                                                  optimization through multi-fidelity simulations, machine
            92.  Tang YT, Panwisawas C, Ghoussoub JN,  et al. Alloys-  learning, and boundary refinement strategies. Eng Comput.
               by-design: Application to new superalloys for additive   2024;40(6):4081-4108.
               manufacturing. Acta Mater. 2021;202:417-436.
                                                                  doi: 10.1007/s00366-024-02053-4
               doi: 10.1016/j.actamat.2020.09.023
                                                               103. Hua Y, Jin Y, Hao K, Cao Y. Generating multiple reference
            93.  Wang L, Zhang Y, Chia HY, Yan W. Mechanism of keyhole   vectors for a class of many-objective optimization problems
               pore formation in metal additive manufacturing.  NPJ   with degenerate Pareto fronts.  Complex Intell Syst.
               Computat Mater. 2022;8(1):22.                      2020;6(2):275-285.
               doi: 10.1038/s41524-022-00699-6                    doi: 10.1007/s40747-020-00136-5
            94.  Lee JA, Sagong MJ, Jung J, Kim ES, Kim HS. Explainable   104. Deb K, Pratap A, Agarwal S, Meyarivan T. A  fast and
               machine learning for understanding and predicting   elitist multiobjective genetic algorithm: NSGA-II.  IEEE
               geometry and defect types in Fe-Ni alloys fabricated by   Transactions on Evolutionary Computation. 2002;6(2):182-
               laser metal deposition additive manufacturing. J Mater Res   197. doi:10.1109/4235.996017
               Technol. 2023;22:413-423.
                                                               105. Wang J, Feng L, Xu J,  et al. Optimal process parameter
               doi: 10.1016/j.jmrt.2022.11.137                    combinations search for desired deposited layer geometry
            95.  Gui Y, Aoyagi K, Bian H, Chiba A. Detection, classification   in laser-arc hybrid additive manufacturing based on multi-
               and prediction of internal defects from surface morphology   pass overlapping deposited layer contour prediction model
               data of metal parts fabricated by powder bed fusion type   and  improved  NSGA-II  algorithm.  Optics Laser Technol.
               additive manufacturing using an electron beam.  Addit   2025;187:112700.
               Manuf. 2022;54:102736.                             doi: 10.1016/j.optlastec.2025.112700
               doi: 10.1016/j.addma.2022.102736                106. Padhye  N, Deb K.  Multi‐objective  optimisation  and
            96.  Du Y, Mukherjee T, DebRoy T. Physics-informed    multi‐criteria decision making in SLS using evolutionary
               machine learning and mechanistic modeling of additive   approaches. Rapid Prototyp J. 2011;17(6):458-478.
               manufacturing  to  reduce  defects.  Appl Mater Today.      doi: 10.1108/13552541111184198
               2021;24:101123.
                                                               107. Aboutaleb AM, Mahtabi MJ, Tschopp MA, Bian L. Multi-
               doi: 10.1016/j.apmt.2021.101123                    objective accelerated process optimization of mechanical
            97.  Dharmadhikari S, Menon N, Basak A. A  reinforcement   properties  in  laser-based  additive  manufacturing:  Case
               learning  approach  for process parameter optimization  in   study on Selective Laser Melting (SLM) Ti-6Al-4V. J Manuf
               additive manufacturing. Addit Manuf. 2023;71:103556.  Process. 2019;38:432-444.
               doi: 10.1016/j.addma.2023.103556                   doi: 10.1016/j.jmapro.2018.12.040
            98.  Zhou HR, Yang H, Li HQ, et al. Advancements in machine   108. Startt J, McCarthy MJ, Wood MA, Donegan S, Dingreville R.
               learning for material design and process optimization   Bayesian blacksmithing: Discovering thermomechanical
               in the field of additive manufacturing.  China  Foundry.   properties and deformation mechanisms in high-entropy
               2024;21(2):101-115.                                refractory alloys. NPJ Computat Mater. 2024;10(1):164.


            Volume 1 Issue 4 (2025)                         28                         doi: 10.36922/ESAM025440031
   45   46   47   48   49   50   51   52   53   54   55