Page 53 - ESAM-1-4
P. 53
Engineering Science in
Additive Manufacturing Machine learning for biomedical metal AM
powder bed fusion additive manufacturing. Addit Manuf. Model Predictive Control using time-series deep neural
2020;31:100985. networks. J Manuf Syst. 2025;80:412-424.
doi: 10.1016/j.addma.2019.100985 doi: 10.1016/j.jmsy.2025.03.009
150. Meng L, McWilliams B, Jarosinski W, et al. Machine 156. Li Z, Birbilis N. NSGAN: A non-dominant sorting
learning in additive manufacturing: A review. JOM. optimisation-based generative adversarial design framework
2020;72(6):2363-2377. for alloy discovery. NPJ Computat Mater. 2024;10(1):112.
doi: 10.1007/s11837-020-04155-y doi: 10.1038/s41524-024-01294-7
151. Ye D, Hong GS, Zhang Y, Zhu K, Fuh JYH. Defect detection 157. Griebler JJ, Tappan AS, Rogers SA, Grillet AM, Kopatz JW.
in selective laser melting technology by acoustic signals Printability criterion and filler characteristics model for
with deep belief networks. Int J Adv Manuf Technol.
2018;96(5):2791-2801. material extrusion additive manufacturing. Addit Manuf.
2025;99:104651.
doi: 10.1007/s00170-018-1728-0
doi: 10.1016/j.addma.2025.104651
152. Armstrong AA, Pfeil A, Alleyne AG, Wagoner Johnson AJ.
Process monitoring and control strategies in extrusion- 158. Ren W, Zhang YF, Wang WL, Ding SJ, Li N. Prediction and
based bioprinting to fabricate spatially graded structures. design of high hardness high entropy alloy through machine
Bioprinting. 2021;21:e00126. learning. Mater Des. 2023;235:112454.
doi: 10.1016/j.bprint.2020.e00126 doi: 10.1016/j.matdes.2023.112454
153. Liu Y, Wang L, Brandt M. Model predictive control 159. Trovato M, Belluomo L, Bici M, Prist M, Campana F, Cicconi P.
of laser metal deposition. Int J Adv Manuf Technol. Machine learning in design for additive manufacturing:
2019;105(1):1055-1067. A state-of-the-art discussion for a support tool in product
doi: 10.1007/s00170-019-04279-9 design lifecycle. Int J Adv Manuf Technol. 2025;137:2157-2180.
154. Cao X, Ayalew B. Robust multivariable predictive control for doi: 10.1007/s00170-025-15273-9
laser-aided powder deposition processes. J Franklin Instit. 160. Gunasegaram DR, Barnard AS, Matthews MJ, et al. Machine
2019;356(5):2505-2529. learning-assisted in-situ adaptive strategies for the control
doi: 10.1016/j.jfranklin.2018.12.015 of defects and anomalies in metal additive manufacturing.
Addit Manuf. 2024;81:104013.
155. Chen YP, Karkaria V, Tsai YK, et al. Real-time decision-
making for Digital Twin in additive manufacturing with doi: 10.1016/j.addma.2024.104013
Volume 1 Issue 4 (2025) 31 doi: 10.36922/ESAM025440031

