Page 52 - ESAM-1-4
P. 52

Engineering Science in
            Additive Manufacturing                                              Machine learning for biomedical metal AM



               doi: 10.3390/met10010103                           analysis  and  machine  learning.  Int J Adv Manuf Technol.
                                                                  2024;132(9):5087-5101.
            129. Liu L, Ju F, Kim S. Online thermal profile prediction for
               large format additive manufacturing: A hybrid CNN-LSTM      doi: 10.1007/s00170-024-13641-5
               based approach. Addit Manuf. 2025;109:104882.
                                                               140.  Montazeri M, Nassar AR, Dunbar AJ, Rao P. In-process
               doi: 10.1016/j.addma.2025.104882                   monitoring of porosity in additive manufacturing using
            130. Lopez A, Bacelar R, Pires I, Santos TG, Sousa JP, Quintino L.   optical emission spectroscopy. IISE Trans. 2020;52(5):500-515.
               Non-destructive testing application of radiography and      doi: 10.1080/24725854.2019.1659525
               ultrasound for wire and arc additive manufacturing. Addit
               Manuf. 2018;21:298-306.                         141. Chen X, Fu Y, Kong F, et al. An in-process multi-feature data
                                                                  fusion nondestructive testing approach for wire arc additive
               doi: 10.1016/j.addma.2018.03.020                   manufacturing. Rapid Prototyp J. 2021;28(3):573-584.
            131. Wang J, Zhang X, Lu Y. Machine learning in image-based      doi: 10.1108/rpj-02-2021-0034
               metal additive manufacturing process monitoring and
               control: A review. Eng Sci Addit Manuf. 2025;1(1):8548.  142. Gaikwad A, Giera B, Guss GM, Forien JB, Matthews MJ,
                                                                  Rao  P. Heterogeneous  sensing  and  scientific machine
               doi: 10.36922/esam.8548                            learning for quality assurance in laser powder bed fusion - A
            132. Ansari MA, Crampton A, Garrard R, Cai B, Attallah M.   single-track study. Addit Manuf. 2020;36:101659.
               A  convolutional neural network (CNN) classification to      doi: 10.1016/j.addma.2020.101659
               identify the presence of pores in powder bed fusion images.
               Int J Adv Manuf Technol. 2022;120(7):5133-5150.  143. Knaak C, Masseling L, Duong E, Abels P, Gillner A. Improving
                                                                  build quality in laser powder bed fusion using high dynamic
               doi: 10.1007/s00170-022-08995-7                    range imaging and model-based reinforcement learning.
            133. Lee H, Heogh W, Yang J,  et al. Deep learning for  in-situ   IEEE Access. 2021;9:55214-55231.
               powder stream fault detection in directed energy deposition      doi: 10.1109/ACCESS.2021.3067302
               process. J Manuf Syst. 2022;62:575-587.
                                                               144. Scime L, Beuth J. A multi-scale convolutional neural network
               doi: 10.1016/j.jmsy.2022.01.013                    for autonomous anomaly detection and classification in a
            134. Yang  Z,  Zhu  L,  Dun  Y,  et al.  In-situ  monitoring  of   laser powder bed fusion additive manufacturing process.
               the melt pool dynamics in ultrasound-assisted metal   Addit Manuf. 2018;24:273-286.
               3D printing using machine learning.  Virtual Phys      doi: 10.1016/j.addma.2018.09.034
               Prototyp. 2023;18(1):e2251453.
                                                               145. Chen L, Bi G, Yao X, et al. Multisensor fusion-based digital
               doi: 10.1080/17452759.2023.2251453                 twin for localized quality prediction in robotic laser-
            135. Mi J, Zhang Y, Li H, et al. In-situ monitoring laser based   directed energy deposition.  Robot Comput Integr Manuf.
               directed energy deposition process with deep convolutional   2023;84:102581.
               neural network. J Intell Manuf. 2023;34(2):683-693.     doi: 10.1016/j.rcim.2023.102581
               doi: 10.1007/s10845-021-01820-0                 146. Rescsanski S, Hebert R, Haghighi A, Tang J, Imani F. Towards
            136. Prem PR, Sanker AP, Sebastian S, Kaliyavaradhan SK.   intelligent cooperative robotics in additive manufacturing:
               A review on application of acoustic emission testing during   Past, present, and future.  Robot Comput Integr Manuf.
               additive manufacturing. J Nondestr Eval. 2023;42(4):96.  2025;93:102925.
               doi: 10.1007/s10921-023-01005-0                    doi: 10.1016/j.rcim.2024.102925
            137. Yu Q, Zhang M, Mujumdar AS, Li J. AI-based additive   147. Abranovic  B,  Sarkar  S, Chang-Davidson  E,  Beuth  J.  Melt
               manufacturing for future food: Potential applications,   pool level flaw detection in laser hot wire directed energy
               challenges and possible solutions.  Innov Food Sci Emerg   deposition using a convolutional long short-term memory
               Technol. 2024;92:103599.                           autoencoder. Addit Manuf. 2024;79:103843.
               doi: 10.1016/j.ifset.2024.103599                   doi: 10.1016/j.addma.2023.103843
            138. Luo  S,  Ma  X, Xu J,  Li  M,  Cao  L.  Deep  learning  based   148. Reutzel EW, Nassar AR. A  survey of sensing and control
               monitoring of spatter behavior by the acoustic signal in   systems for machine and process monitoring of directed-
               selective laser melting. Sensors (Basel). 2021;21(21):7179.  energy, metal-based additive manufacturing. Rapid Prototyp
                                                                  J. 2015;21(2):159-167.
               doi: 10.3390/s21217179
                                                                  doi: 10.1108/rpj-12-2014-0177
            139. Rahman MA, Jamal S, Cruz MV, Silwal B, Taheri H. In situ
               process monitoring of multi-layer deposition in wire arc   149. Wang  Q,  Michaleris  P,  Nassar  AR,  Irwin  JE,  Ren  Y,
               additive manufacturing (WAAM) process with acoustic data   Stutzman CB. Model-based feedforward control of laser


            Volume 1 Issue 4 (2025)                         30                         doi: 10.36922/ESAM025440031
   47   48   49   50   51   52   53   54   55   56   57