Page 46 - ESAM-1-4
P. 46

Engineering Science in
            Additive Manufacturing                                              Machine learning for biomedical metal AM



            2.   Isik M, Avila JD, Bandyopadhyay A. Alumina and tricalcium   tailoring mechanical properties of traditionally brittle alloys.
               phosphate added CoCr alloy for load-bearing implants.   Manuf Lett. 2021;28:30-34.
               Addit Manuf. 2020;36:101553.
                                                                  doi: 10.1016/j.mfglet.2021.02.003
               doi: 10.1016/j.addma.2020.101553                14.  Gotterbarm MR, Seifi M, Melzer D, et al. Small scale testing
            3.   Dong J, Lin T, Shao H,  et al. Advances in degradation   of  IN718  single  crystals  manufactured  by  EB-PBF.  Addit
               behavior of biomedical magnesium alloys: A review. J Alloys   Manuf. 2020;36:101449.
               Compd. 2022;908:164600.
                                                                  doi: 10.1016/j.addma.2020.101449
               doi: 10.1016/j.jallcom.2022.164600
                                                               15.  Qian M, Xu W, Brandt M, Tang HP. Additive manufacturing
            4.   Perumal G, Ayyagari A, Chakrabarti A, et al. Friction stir   and postprocessing of Ti-6Al-4V for superior mechanical
               processing of stainless steel for ascertaining its superlative   properties. MRS Bull. 2016;41(10):775-784.
               performance in bioimplant applications.  ACS  Appl  Mater      doi: 10.1557/mrs.2016.215
               Interfaces. 2017;9(42):36615-36631.
                                                               16.  Behjat A, Sanaei S, Mosallanejad MH, et al. A novel titanium
               doi: 10.1021/acsami.7b11064
                                                                  alloy for load-bearing biomedical implants: Evaluating the
            5.   Sarraf M, Rezvani Ghomi E, Alipour S, Ramakrishna S,   antibacterial and biocompatibility of Ti536 produced via
               Liana Sukiman N. A state-of-the-art review of the fabrication   electron beam powder bed fusion additive manufacturing
               and characteristics of titanium and its alloys for biomedical   process. Biomater Adv. 2024;163:213928.
               applications. Bio Des Manuf. 2022;5(2):371-395.
                                                                  doi: 10.1016/j.bioadv.2024.213928
               doi: 10.1007/s42242-021-00170-3                 17.  Ma  HY,  Wang  JC,  Qin  P,  et al.  Advances  in  additively
            6.   Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their   manufactured titanium alloys by powder bed fusion and
               additive manufacturing. Rare Metals. 2016;35(9):661-671.  directed energy deposition: Microstructure, defects, and
                                                                  mechanical behavior. J Mater Sci Technol. 2024;183:32-62.
               doi: 10.1007/s12598-016-0793-5
                                                                  doi: 10.1016/j.jmst.2023.11.003
            7.   Bandyopadhyay  A,  Mitra  I,  Avila  JD,  Upadhyayula  M,
               Bose S. Porous metal implants: Processing, properties, and   18.  Attar H, Calin M, Zhang LC, Scudino S, Eckert J.
               challenges. Int J Extreme Manuf. 2023;5(3):032014.  Manufacture by selective laser melting and mechanical
                                                                  behavior of commercially pure titanium. Mater Sci Eng A.
               doi: 10.1088/2631-7990/acdd35
                                                                  2014;593:170-177.
            8.   Yang Y, Jiang R, Han C,  et al. Frontiers in laser additive      doi: 10.1016/j.msea.2013.11.038
               manufacturing  technology.  Addit  Manuf  Front.
               2024;3(4):200160.                               19.  Zhao B, Wang H, Qiao N, Wang C, Hu M. Corrosion
                                                                  resistance characteristics of a Ti-6Al-4V alloy scaffold
               doi: 10.1016/j.amf.2024.200160
                                                                  that is fabricated by electron beam melting and selective
            9.   Zhang  LC,  Wang  J.  Stabilizing  3D-printed  metal  alloys.   laser melting for implantation  in vivo.  Mater Sci Eng C.
               Science. 2024;383(6683):586-587.                   2017;70:832-841.
               doi: 10.1126/science.adn6566                       doi: 10.1016/j.msec.2016.07.045
            10.  Wong KC, Scheinemann P. Additive manufactured metallic   20.  Bai Y, Gai X, Li S,  et al. Improved corrosion behaviour
               implants for orthopaedic applications.  Sci China Mater.   of electron beam melted Ti-6Al–4V alloy in phosphate
               2018;61(4):440-454.                                buffered saline. Corros Sci. 2017;123:289-296.
               doi: 10.1007/s40843-017-9243-9                     doi: 10.1016/j.corsci.2017.05.003
            11.  Luna V, Trujillo L, Gamon A,  et al. Comprehensive and   21.  Cui YW, Chen LY, Qin P, et al. Metastable pitting corrosion
               comparative heat treatment of additively manufactured   behavior of laser powder bed fusion produced Ti-6Al-4V in
               inconel  625 alloy and  corresponding  microstructures  and   Hank’s solution. Corros Sci. 2022;203:110333.
               mechanical properties. J Manuf Mater Process. 2022;6(5):107.
                                                                  doi: 10.1016/j.corsci.2022.110333
               doi: 10.3390/jmmp6050107
                                                               22.  Shao L, Du Y, Dai K, et al. β-Ti alloys for orthopedic and
            12.  Alghamdi A, Downing D, Tino R, et al. Buckling phenomena   dental applications: A review of progress on improvement
               in AM lattice strut elements: A  design tool applied to   of properties through surface modification.  Coatings.
               Ti-6Al-4V LB-PBF. Mater Des. 2021;208:109892.      2021;11(12):1446.
               doi: 10.1016/j.matdes.2021.109892                  doi: 10.3390/coatings11121446
            13.  Babuska TF, Krick BA, Susan DF, Kustas AB. Comparison   23.  Wang B, Luo  M, Shi Z,  et al. Porous titanium alloys  for
               of  powder bed fusion and  directed energy deposition for   medical application: Progress in preparation process and


            Volume 1 Issue 4 (2025)                         24                         doi: 10.36922/ESAM025440031
   41   42   43   44   45   46   47   48   49   50   51