Page 28 - GPD-1-2
P. 28
Gene & Protein in Disease DNA methylation and gene expression on rats with protein malnutrition
14. Kim J, Choi A, Kwon YH, 2020, Maternal protein restriction https://doi.org/10.1080/1028415X.2020.1829343
altered insulin resistance and inflammation-associated gene 25. Greenberg MVC, Bourcurcg D, 2019, The diverse roles of
expression in adipose tissue of young adult mouse offspring DNA methylation in mammalian development and disease.
in response to a high-fat diet. Nutrients, 12(4): 1103.
Nat Rev Mol Cell Biol, 20(10): 590–607.
https://doi.org/10.3390/nu12041103 https://doi.org/10.1038/s41580-019-0159-6
15. Boubred F, Daniel L, Buffat C, et al., 2009, Early postnatal 26. Nätt D, Barchiesi R, Murad J, et al., 2017, Perinatal
overfeeding induces early chronic renal dysfunction in adult malnutrition leads to sexually dimorphic behavioral
male rats. Am J Physiol Renal Physiol, 297(4): F943. responses with associated epigenetic changes in the mouse
https://doi.org/10.1152/ajprenal.90704.2008 brain. Sci Rep, 7(1): 1–14.
16. Pond WG, Mersmann HJ, Yen JT, 1985, Severe feed restriction https://doi.org/10.1038/s41598-017-10803-2
of pregnant swine and rats: Effects on postweaning growth 27. Jin Z, Liu Y, 2018, DNA methylation in human diseases.
and body composition of progeny. J Nutr, 115(2): 179–189. Genes Dis, 5(1): 1–8.
https://doi.org/10.1093/jn/115.2.179 https://doi.org/10.1016/j.gendis.2018.01.002
17. Tomi M, Zhao Y, Thamotharan S, et al., 2013, Early life 28. Pan Y, Liu G, Zhou F, et al., 2018, DNA methylation profiles
nutrient restriction impairs blood-brain metabolic profile in cancer diagnosis and therapeutics. Clin Exp Med, 18(1):
and neurobehavior predisposing to Alzheimer’s disease with 1–14.
aging. Brain Res, 1495:61–75.
https://doi.org/10.1007/s10238-017-0467-0
https://doi.org/10.1016/j.brainres.2012.11.050
29. Herttuala S, Baker AH, 2017, Cardiovascular gene therapy:
18. Ripsin C, 2009, The metabolic syndrome: Underdiagnosed Past, present, and future. Mol Ther, 25: 1095–1106.
and undertreated. South Med J, 102(12): 1194–1195.
https://doi.org/10.1016/j.ymthe.2017.03.027
https://doi.org/10.1097/SMJ.0b013e3181c03173
30. Crispi F, Miranda J, Gratacós E, 2018, Long-term
19. Haque M, Starr LM, Koski KG, et al., 2018, Differential cardiovascular consequences of fetal growth restriction:
expression of genes in fetal brain as a consequence of biology, clinical implications, andopportunities for
maternal protein deficiency and nematode infection. Int J prevention of adult disease. Am J Obst Gynecol, 218(2):
Parasitol, 48(1): 51–58. S869–S879.
https://doi.org/10.1016/j.ijpara.2017.07.005 https://doi.org/10.1016/j.ajog.2017.12.012
20. De Sousa SM, Braz GRF, Freitas CM, et al., 2018, Oxidative 31. Magalhães ESD, Méio MDB, Moreira MEL, 2019, Hormonal
injuries induced by maternal low-protein diet in female biomarkers for evaluating the impact of fetal growth
brainstem. Nutr Neurosci, 21(8): 580–588. restriction on the development of chronic adult disease. Rev
https://doi.org/10.1080/1028415X.2017.1325974 Bras Ginecol Obst, 41: 256–263.
21. Danson AF, Marzi SJ, Lowe R, et al., 2018, Early life diet https://doi.org/10.1055/s-0039-1683904
conditions the molecular response to post-weaning protein 32. Campisano S, La Colla A, Echarte SM, et al., 2019, Interplay
restriction in the mouse. BMC Biol, 16(1): 51. between early-life malnutrition, epigenetic modulation
https://doi.org/10.1186/s12915-018-0516-5 of the immune function and liver diseases. Nutr Res Rev,
32: 128–145.
22. Rinaldi JC, Santos SAA, Colombelli KT, et al., 2018, Maternal
protein malnutrition: Effects on prostate development and https://doi.org/10.1017/S0954422418000239
adult disease. J Dev Orig Health Dis, 9(4): 361–372. 33. May L, Newton ER, 2017, Adaptation of maternal-fetal
https://doi.org/10.1017/S2040174418000168 physiology to exercise in pregnancy: The basis of guidelines
for physical activity in pregnancy. Clin Med Insights Womens
23. Odhiambo JF, Pankey CL, Ghnenis AB, et al., 2020, A review Health, 10: 1179562X17693224.
of maternal nutrition during pregnancy and impact on the
offspring through development: evidence from animal https://doi.org/10.1177/1179562X17693224
models of over-and undernutrition. Int J Environ Res Public 34. Wang LM, Chen ZH, Zhang M, et al., 2019, Study of the
Health, 17(18): 6926. prevalence and disease burden of chronic disease in the elderly
https://doi.org/10.3390/ijerph17186926 in China. Zhonghua Liu Xing Bing Xue Za Zhi, 40(3): 277–283.
https://doi.org/10.3760/cma.j.issn.0254-6450.2019.03.005
24. Ferroni NM, Berardino BG, Belluscio LM, et al., 2020, Perinatal
protein malnutrition induces the emergence of enduring 35. Seymour DK, Gaut BS, 2020, Phylogenetic shifts in gene
effects and age-related impairment behaviors, increasing the body methylation correlate with gene expression and reflect
death risk in a mouse model. Nutr Neurosci, 2020: 1–14. trait conservation. Mol Biol Evol, 37(1): 31–43.
Volume 1 Issue 2 (2022) 22 https://doi.org/10.36922/gpd.v1i2.169

