Page 28 - GPD-1-2
P. 28

Gene & Protein in Disease                      DNA methylation and gene expression on rats with protein malnutrition



            14.  Kim J, Choi A, Kwon YH, 2020, Maternal protein restriction      https://doi.org/10.1080/1028415X.2020.1829343
               altered insulin resistance and inflammation-associated gene   25.  Greenberg MVC, Bourcurcg D, 2019, The diverse roles of
               expression in adipose tissue of young adult mouse offspring   DNA methylation in mammalian development and disease.
               in response to a high-fat diet. Nutrients, 12(4): 1103.
                                                                  Nat Rev Mol Cell Biol, 20(10): 590–607.
               https://doi.org/10.3390/nu12041103                 https://doi.org/10.1038/s41580-019-0159-6
            15.  Boubred F, Daniel L, Buffat C, et al., 2009, Early postnatal   26.  Nätt D, Barchiesi R, Murad J,  et al., 2017, Perinatal
               overfeeding induces early chronic renal dysfunction in adult   malnutrition leads to sexually dimorphic behavioral
               male rats. Am J Physiol Renal Physiol, 297(4): F943.   responses with associated epigenetic changes in the mouse
               https://doi.org/10.1152/ajprenal.90704.2008        brain. Sci Rep, 7(1): 1–14.
            16.  Pond WG, Mersmann HJ, Yen JT, 1985, Severe feed restriction      https://doi.org/10.1038/s41598-017-10803-2
               of pregnant swine and rats: Effects on postweaning growth   27.  Jin Z, Liu Y, 2018, DNA methylation in human diseases.
               and body composition of progeny. J Nutr, 115(2): 179–189.   Genes Dis, 5(1): 1–8.
               https://doi.org/10.1093/jn/115.2.179               https://doi.org/10.1016/j.gendis.2018.01.002
            17.  Tomi M, Zhao Y, Thamotharan S,  et al., 2013, Early life   28.  Pan Y, Liu G, Zhou F, et al., 2018, DNA methylation profiles
               nutrient restriction impairs blood-brain metabolic profile   in cancer diagnosis and therapeutics. Clin Exp Med, 18(1):
               and neurobehavior predisposing to Alzheimer’s disease with   1–14.
               aging. Brain Res, 1495:61–75.
                                                                  https://doi.org/10.1007/s10238-017-0467-0
               https://doi.org/10.1016/j.brainres.2012.11.050
                                                               29.  Herttuala S, Baker AH, 2017, Cardiovascular gene therapy:
            18.  Ripsin C, 2009, The metabolic syndrome: Underdiagnosed   Past, present, and future. Mol Ther, 25: 1095–1106.
               and undertreated. South Med J, 102(12): 1194–1195.
                                                                  https://doi.org/10.1016/j.ymthe.2017.03.027
               https://doi.org/10.1097/SMJ.0b013e3181c03173
                                                               30.  Crispi F, Miranda J, Gratacós E, 2018, Long-term
            19.  Haque M, Starr LM, Koski KG,  et al., 2018, Differential   cardiovascular consequences of fetal growth restriction:
               expression  of  genes  in  fetal  brain  as  a  consequence  of   biology,  clinical  implications, andopportunities  for
               maternal protein deficiency and nematode infection. Int J   prevention of adult disease.  Am J Obst Gynecol, 218(2):
               Parasitol, 48(1): 51–58.                           S869–S879.
               https://doi.org/10.1016/j.ijpara.2017.07.005       https://doi.org/10.1016/j.ajog.2017.12.012
            20.  De Sousa SM, Braz GRF, Freitas CM, et al., 2018, Oxidative   31.  Magalhães ESD, Méio MDB, Moreira MEL, 2019, Hormonal
               injuries  induced  by  maternal  low-protein  diet  in  female   biomarkers for evaluating the impact of fetal growth
               brainstem. Nutr Neurosci, 21(8): 580–588.          restriction on the development of chronic adult disease. Rev
               https://doi.org/10.1080/1028415X.2017.1325974      Bras Ginecol Obst, 41: 256–263.
            21.  Danson AF, Marzi SJ, Lowe R, et al., 2018, Early life diet      https://doi.org/10.1055/s-0039-1683904
               conditions the molecular response to post-weaning protein   32.  Campisano S, La Colla A, Echarte SM, et al., 2019, Interplay
               restriction in the mouse. BMC Biol, 16(1): 51.     between early-life malnutrition, epigenetic modulation
               https://doi.org/10.1186/s12915-018-0516-5          of the immune function and liver diseases. Nutr Res Rev,
                                                                  32: 128–145.
            22.  Rinaldi JC, Santos SAA, Colombelli KT, et al., 2018, Maternal
               protein malnutrition: Effects on prostate development and      https://doi.org/10.1017/S0954422418000239
               adult disease. J Dev Orig Health Dis, 9(4): 361–372.   33.  May L, Newton ER, 2017, Adaptation of maternal-fetal
               https://doi.org/10.1017/S2040174418000168          physiology to exercise in pregnancy: The basis of guidelines
                                                                  for physical activity in pregnancy. Clin Med Insights Womens
            23.  Odhiambo JF, Pankey CL, Ghnenis AB, et al., 2020, A review   Health, 10: 1179562X17693224.
               of maternal nutrition during pregnancy and impact on the
               offspring through development: evidence from animal      https://doi.org/10.1177/1179562X17693224
               models of over-and undernutrition. Int J Environ Res Public   34.  Wang  LM,  Chen  ZH,  Zhang  M,  et al.,  2019,  Study  of  the
               Health, 17(18): 6926.                              prevalence and disease burden of chronic disease in the elderly
               https://doi.org/10.3390/ijerph17186926             in China. Zhonghua Liu Xing Bing Xue Za Zhi, 40(3): 277–283.
                                                                  https://doi.org/10.3760/cma.j.issn.0254-6450.2019.03.005
            24.  Ferroni NM, Berardino BG, Belluscio LM, et al., 2020, Perinatal
               protein malnutrition induces the emergence of enduring   35.  Seymour DK, Gaut BS, 2020, Phylogenetic shifts in gene
               effects and age-related impairment behaviors, increasing the   body methylation correlate with gene expression and reflect
               death risk in a mouse model. Nutr Neurosci, 2020: 1–14.   trait conservation. Mol Biol Evol, 37(1): 31–43.


            Volume 1 Issue 2 (2022)                         22                     https://doi.org/10.36922/gpd.v1i2.169
   23   24   25   26   27   28   29   30   31   32   33