Page 82 - GPD-2-1
P. 82

Gene & Protein in Disease                                  m1A-mediated ESCCAL-1 promotes ESCA stemness



               https://doi.org/10.3390/genes13050910              perspectives. Comput Struct Biotechnol J, 20: 6578––6585.
            12.  Chen Z, Qi M, Shen B,  et al., 2019, Transfer RNA      https://doi.org/10.1016/j.csbj.2022.11.045
               demethylase ALKBH3 promotes cancer progression via   22.  Paul R, Dorsey JF, Fan Y, 2022, Cell plasticity, senescence, and
               induction of tRNA-derived small RNAs. Nucleic Acids Res,   quiescence in cancer stem cells: Biological and therapeutic
               47(5): 2533–2545.
                                                                  implications. Pharmacol Ther, 231: 107985.
               https://doi.org/10.1093/nar/gky1250
                                                                  https://doi.org/10.1016/j.pharmthera.2021.107985
            13.  Wang Y, Wang J, Li X,  et al., 2021, N1-methyladenosine   23.  Du L, Cheng Q, Zheng H, et al., 2022, Targeting stemness of
               methylation in tRNA drives liver tumourigenesis by regulating   cancer stem cells to fight colorectal cancers. Semin Cancer
               cholesterol metabolism. Nat Commun, 12(1): 6314.
                                                                  Biol, 82: 150–161.
               https://doi.org/10.1038/s41467-021-26718-6
                                                                  https://doi.org/10.1016/j.semcancer.2021.02.012
            14.  Wu Y, Chen Z, Xie G, et al., 2022, RNA m A methylation   24.  Liu C, Zhang Y, Gao J, et al., 2022, A highly potent small-
                                               1
               regulates glycolysis of cancer cells through modulating   molecule antagonist of exportin-1 selectively eliminates
               ATP5D. Proc Natl Acad Sci U S A, 119(28): e2119038119.
                                                                  CD44+CD24-enriched breast cancer stem-like cells.  Drug
               https://doi.org/10.1073/pnas.2119038119            Resist Updat, 66: 100903.
            15.  Lu Q, Wang H, Lei X, et al., 2022, LncRNA ALKBH3-AS1      https://doi.org/10.1016/j.drup.2022.100903
               enhances  ALKBH3  mRNA    stability  to  promote  25.  Ervin  EH,  French R, Chang  CH,  et al.,  2022, Inside  the
               hepatocellular carcinoma cell proliferation and invasion.   stemness engine: Mechanistic links between deregulated
               J Cell Mol Med, 26(20): 5292–5302.
                                                                  transcription factors and stemness in cancer. Semin Cancer
               https://doi.org/10.1111/jcmm.17558                 Biol, 87: 48–83.
            16.  Nallasamy P, Nimmakayala RK, Parte S, et al., 2022, Tumor      https://doi.org/10.1016/j.semcancer.2022.11.001
               microenvironment enriches the stemness features: The   26.  Taheri M, Khoshbakht T, Jamali E, et al., 2021, Interaction
               architectural event of therapy resistance and metastasis. Mol   between non-coding RNAs and androgen receptor with an
               Cancer, 21(1): 225.
                                                                  especial focus on prostate cancer. Cells, 10(11): 3198.
               https://doi.org/10.1186/s12943-022-01682-x
                                                                  https://doi.org/10.3390/cells10113198
            17.  Chaudhary A, Raza SS, Haque R, 2023, Transcriptional   27.  Tortora F, Calin GA, Cimmino A, 2021, Effects of long
               factors targeting in cancer stem cells for tumor modulation.   non-coding RNAs on androgen signaling pathways
               Semin Cancer Biol, 88: 123–137.
                                                                  in genitourinary malignancies.  Mol Cell Endocrinol,
               https://doi.org/10.1016/j.semcancer.2022.12.010    526: 111197.
            18.  Wilkinson E, Cui YH, He YY, 2022, Roles of RNA      https://doi.org/10.1016/j.mce.2021.111197
               modifications in diverse cellular functions. Front Cell Dev   28.  Huang F, Chen H, Zhu X,  et  al., 2021, The oncogenomic
               Biol, 10: 828683.
                                                                  function of androgen receptor in esophageal squamous cell
               https://doi.org/10.3389/fcell.2022.828683          carcinoma is directed by GATA3. Cell Res, 31(3): 362–365.
            19.  Wang Z, He J, Bach DH,  et al., 2022, Induction of m6A      https://doi.org/10.1038/s41422-020-00428-y
               methylation in adipocyte exosomal LncRNAs mediates   29.  Zhao Y, Zhao Q, Kaboli PJ,  et al., 2019, m A regulated
                                                                                                    1
               myeloma drug resistance. J Exp Clin Cancer Res, 41(1): 4.
                                                                  genes modulate PI3K/AKT/mTOR and ErbB pathways in
               https://doi.org/10.1186/s13046-021-02209-w         gastrointestinal cancer. Transl Oncol, 12(10): 1323–1333.
            20.  Cui L, Ma R, Cai J,  et al., 2022, RNA modifications:      https://doi.org/10.1016/j.tranon.2019.06.007
               Importance in immune cell biology and related diseases.   30.  Woo HH, Chambers SK, 2019, Human ALKBH3-induced
               Signal Transduct Target Ther, 7(1): 334.
                                                                  m A demethylation increases the CSF-1 mRNA stability in
                                                                    1
               https://doi.org/10.1038/s41392-022-01175-9         breast and ovarian cancer cells. Biochim Biophys Acta Gene
                                                                  Regul Mech, 1862(1): 35–46.
            21.  Li J, Zhang H, Wang H, 2022, N1-methyladenosine
               modification in cancer biology: Current status and future      https://doi.org/10.1016/j.bbagrm.2018.10.008











            Volume 2 Issue 1 (2023)                         10                        https://doi.org/10.36922/gpd.305
   77   78   79   80   81   82   83   84   85   86   87