Page 62 - GPD-2-3
P. 62
Gene & Protein in Disease SARS-CoV-2 Omicron variants in Iraq
https://doi.org/10.1002/jmv.28138 spike protein. Cell, 184: 2316–2331.e15.
27. Tian D, Sun Y, Xu H, et al., 2022, The emergence and https://doi.org/10.1016/j.cell.2021.03.029
epidemic characteristics of the highly mutated SARS-CoV-2
Omicron variant. J Med Virol, 94: 2376–2383. 39. Meng B, Kemp SA, Papa G, et al., 2021, Recurrent emergence
of SARS-CoV-2 spike deletion H69/V70 and its role in the
https://doi.org/10.1002/jmv.27643 Alpha variant B.1.1.7. Cell Rep, 35: 109292.
28. Majumdar S, Sarkar R, 2022, Mutational and phylogenetic https://doi.org/10.1016/j.celrep.2021.109292
analyses of the two lineages of the Omicron variant. J Med
Virol, 94: 1777–1779. 40. Hong Q, Han W, Li J, et al., 2022, Molecular basis of receptor
binding and antibody neutralization of Omicron. Nature,
https://doi.org/10.1002/jmv.27558 604: 546–552.
29. Xia S, Wang L, Zhu Y, et al., 2022, Origin, virological https://doi.org/10.1038/s41586-022-04581-9
features, immune evasion and intervention of SARS-CoV-2
Omicron sublineages. Signal Transduct Target Ther, 7: 241. 41. Cao Y, Yisimayi A, Jian F, et al., 2022, BA.2.12.1, BA.4
and BA.5 escape antibodies elicited by Omicron infection.
30. Abdullah HM, Ali SM, Sabir DK, 2020, Data suggesting that Nature, 608: 593–602.
COVID-19 may have existed in the kurdistan region of Iraq
at the time of the outbreak in wuhan province of China. https://doi.org/10.1038/s41586-022-04980-y
J Kermanshah Univ Med Sci, 24: e105758. 42. Barton MI, MacGowan SA, Kutuzov MA, et al., 2021, Effects
31. Shrestha LB, Foster C, Rawlinson W, et al., 2022, Evolution of common mutations in the SARS-CoV-2 Spike RBD and
of the SARS-CoV-2 omicron variants BA. 1 to BA. 5: its ligand, the human ACE2 receptor on binding affinity and
Implications for immune escape and transmission. Rev Med kinetics. Elife, 10: e70658.
Virol, 32: e2381. https://doi.org/10.7554/eLife.70658
https://doi.org/10.1002/rmv.2381 43. Cao Y, Wang J, Jian F, et al., 2022, Omicron escapes the
32. Markov PV, Ghafari M, Beer M, et al., 2023, The evolution of majority of existing SARS-CoV-2 neutralizing antibodies.
SARS-CoV-2. Nat Rev Microbiol, 21: 361–379. Nature, 602: 657–663.
https://doi.org/10.1038/s41579-023-00878-2 https://doi.org/10.1038/s41586-021-04385-3
33. He Y, Ma W, Dang S, et al., 2022, Possible recombination 44. Verma S, Patil VM, Gupta MK, 2022, Mutation informatics:
between two variants of concern in a COVID-19 patient. SARS-CoV-2 receptor-binding domain of the spike protein.
Emerg Microbes Infect, 11: 552–555. Drug Discov Today, 27: 103312.
https://doi.org/10.1080/22221751.2022.2032375 https://doi.org/10.1016/j.drudis.2022.06.012
34. Balakrishnan KN, Yew CW, Chong ET, et al., 2023, Timeline 45. Kumar S, Thambiraja TS, Karuppanan K, et al., 2022,
of SARS-CoV-2 transmission in Sabah, Malaysia: Tracking Omicron and Delta variant of SARS-CoV-2: A comparative
the molecular evolution. Pathogens, 12: 1047. computational study of spike protein. J Med Virol,
https://doi.org/10.3390/pathogens12081047 94: 1641–1649.
35. Fan Y, Li X, Zhang L, et al., 2022, SARS-CoV-2 Omicron https://doi.org/10.1002/jmv.27526
variant: Recent progress and future perspectives. Signal 46. Ali F, Kasry A, Amin M, 2021, The new SARS-CoV-2 strain
Transduct Target Ther, 7: 141. shows a stronger binding affinity to ACE2 due to N501Y
https://doi.org/10.1038/s41392-022-00997-x mutant. Med Drug Discov, 10: 100086.
36. West AP Jr., Wertheim JO, Wang JC, et al., 2021, Detection https://doi.org/10.1016/j.medidd.2021.100086
and characterization of the SARS-CoV-2 lineage B.1.526 in 47. Quarleri J, Galvan V, Delpino MV, 2022, Omicron Variant of
New York. Nat Commun, 12: 4886. the SARS-CoV-2: A Quest to Define the Consequences of its
https://doi.org/10.1038/s41467-021-25168-4 High Mutational Load. Berlin: Springer. pp1–4.
37. Klinakis A, Cournia Z, Rampias T, 2021, N-terminal domain 48. Chakraborty C, Saha A, Sharma AR, et al., 2021, D614G
mutations of the spike protein are structurally implicated mutation eventuates in all VOI and VOC in SARS-CoV-2:
in epitope recognition in emerging SARS-CoV-2 strains. Is it part of the positive selection pioneered by Darwin? Mol
Comput Struct Biotechnol J, 19: 5556–5567. Ther Nucleic Acids, 26: 237–241.
https://doi.org/10.1016/j.csbj.2021.10.004 https://doi.org/10.1016/j.omtn.2021.07.011
38. Suryadevara N, Shrihari S, Gilchuk P, et al., 2021, 49. Mittal A, Khattri A, Verma V, 2022, Structural and antigenic
Neutralizing and protective human monoclonal antibodies variations in the spike protein of emerging SARS-CoV-2
recognizing the N-terminal domain of the SARS-CoV-2 variants. PLoS Pathog, 18: e1010260.
Volume 2 Issue 3 (2023) 9 https://doi.org/10.36922/gpd.1646

