Page 30 - GTM-2-3
P. 30
Global Translational Medicine Critical roles for BRD4 identified in cancer
family member BRD4 interacts with OCT4 and regulates architecture in DNA repair and genome maintenance. Nat
pluripotency gene expression. Stem Cell Reports, 4: 390–403. Rev Mol Cell Biol, 10: 243–254.
https://doi.org/10.1016/j.stemcr.2015.01.012 https://doi.org/10.1038/nrm2651
22. Houzelstein D, Bullock SL, Lynch DE, et al., 2002, Growth 33. Stanlie A, Yousif AS, Akiyama H, et al., 2014, Chromatin
and early postimplantation defects in mice deficient for reader Brd4 functions in Ig class switching as a repair complex
the bromodomain-containing protein Brd4. Mol Cell Biol, adaptor of nonhomologous end-joining. Mol Cell, 55: 97–110.
22: 3794–3802.
https://doi.org/10.1016/j.molcel.2014.05.018
https://doi.org/10.1128/MCB.22.11.3794-3802.2002
34. Li X, Baek G, Ramanand SG, et al., 2018, BRD4 promotes
23. Lee JE, Park YK, Park S, et al., 2017, Brd4 binds to active DNA repair and mediates the formation of TMPRSS2-ERG
enhancers to control cell identity gene induction in gene rearrangements in prostate cancer. Cell Rep, 22: 796–808.
adipogenesis and myogenesis. Nat Commun, 8: 2217.
https://doi.org/10.1016/j.celrep.2017.12.078
https://doi.org/10.1038/s41467-017-02403-5
35. Schultz LB, Chehab NH, Malikzay A, et al., 2000, p53
24. Drumond-Bock AL, Bieniasz M, 2021, The role of distinct binding protein 1 (53BP1) is an early participant in the
BRD4 isoforms and their contribution to high-grade serous cellular response to DNA double-strand breaks. J Cell Biol,
ovarian carcinoma pathogenesis. Mol Cancer, 20: 145. 151: 1381–1390.
https://doi.org/10.1186/s12943-021-01424-5 https://doi.org/10.1083/jcb.151.7.1381
25. Shi J, Vakoc CR, 2014, The mechanisms behind the 36. Wang B, Matsuoka S, Carpenter PB, et al., 2002, 53BP1,
therapeutic activity of BET bromodomain inhibition. Mol a mediator of the DNA damage checkpoint. Science,
Cell, 54: 728–736. 298: 1435–1438.
https://doi.org/10.1016/j.molcel.2014.05.016 https://doi.org/10.1126/science.1076182
26. Wu SY, Lee AY, Hou SY, et al, 2006, Brd4 links chromatin 37. Sabari BR, Dall’Agnese A, Boija A, et al., 2018, Coactivator
targeting to HPV transcriptional silencing. Genes Dev, condensation at super-enhancers links phase separation and
20: 2383–2396. gene control. Science, 361: eaar3958.
https://doi.org/10.1101/gad.1448206 https://doi.org/10.1126/science.aar3958
27. Karr JP, Ferrie JJ, Tjian R, et al., 2021, The transcription 38. Floyd SR, Pacold ME, Huang Q, et al., 2013, The
factor activity gradient (TAG) model: Contemplating a bromodomain protein Brd4 insulates chromatin from DNA
contact-independent mechanism for enhancer-promoter damage signalling. Nature, 498: 246–225.
communication. Gene Dev, 36: 7–16.
https://doi.org/10.1038/nature12147
https://doi.org/10.1101/gad.349160.121
39. Zhang J, Dulak AM, Hattersley MM, et al., 2018, BRD4
28. Winter GE, Mayer A, Buckley DL, et al., 2017, BET facilitates replication stress-induced DNA damage response.
bromodomain proteins function as master transcription Oncogene, 37: 3763–3777.
elongation factors independent of CDK9 recruitment. Mol https://doi.org/10.1038/s41388-018-0194-3
Cell, 67: 5–18.e19.
40. Zeman MK, Cimprich KA, 2014, Causes and consequences
https://doi.org/10.1016/j.molcel.2017.06.00
of replication stress. Nat Cell Biol, 16: 2–9.
29. Rahnamoun H, Lee J, Sun Z, et al., 2018, RNAs interact with https://doi.org/10.1038/ncb2897
BRD4 to promote enhanced chromatin engagement and
transcription activation. Nat Struct Mol Biol, 25: 687–697. 41. Zhou BB, Bartek J, 2004, Targeting the checkpoint kinases:
https://doi.org/10.1038/s41594-018-0102-0 Chemosensitization versus chemoprotection. Nat Rev
Cancer, 4: 216–225.
30. Bressin A, Jasnovidova O, Arnold M, et al., 2023, High-
sensitive nascent transcript sequencing reveals BRD4- https://doi.org/10.1038/nrc1296
specific control of widespread enhancer and target gene 42. Gelot C, Magdalou I, Lopez BS, 2015, Replication stress in
transcription. Nat Commun, 14: 4971.
mammalian cells and its consequences for mitosis. Genes
https://doi.org/10.1038/s41467-023-40633-y (Basel), 6: 267–298.
31. Mani RS, Chinnaiyan AM, 2010, Triggers for genomic https://doi.org/10.3390/genes6020267
rearrangements: Insights into genomic, cellular and 43. Cheung-Ong K, Giaever G, Nislow C, 2013, DNA-damaging
environmental influences. Nat Rev Genet, 11: 819–829.
agents in cancer chemotherapy: Serendipity and chemical
https://doi.org/10.1038/nrg2883 biology. Chem Biol, 20: 648–659.
32. Misteli T, Soutoglou E, 2009, The emerging role of nuclear https://doi.org/10.1016/j.chembiol.2013.04.007
Volume 2 Issue 3 (2023) 9 https://doi.org/10.36922/gtm.1442

