Page 30 - GTM-2-3
P. 30

Global Translational Medicine                                       Critical roles for BRD4 identified in cancer



               family member BRD4 interacts with OCT4 and regulates   architecture in DNA repair and genome maintenance. Nat
               pluripotency gene expression. Stem Cell Reports, 4: 390–403.  Rev Mol Cell Biol, 10: 243–254.
               https://doi.org/10.1016/j.stemcr.2015.01.012       https://doi.org/10.1038/nrm2651
            22.  Houzelstein D, Bullock SL, Lynch DE, et al., 2002, Growth   33.  Stanlie A, Yousif AS, Akiyama H,  et  al., 2014, Chromatin
               and early postimplantation defects in mice deficient for   reader Brd4 functions in Ig class switching as a repair complex
               the bromodomain-containing protein Brd4. Mol Cell Biol,   adaptor of nonhomologous end-joining. Mol Cell, 55: 97–110.
               22: 3794–3802.
                                                                  https://doi.org/10.1016/j.molcel.2014.05.018
               https://doi.org/10.1128/MCB.22.11.3794-3802.2002
                                                               34.  Li X, Baek G, Ramanand SG,  et  al., 2018, BRD4 promotes
            23.  Lee JE, Park YK, Park S, et al., 2017, Brd4 binds to active   DNA repair and mediates the formation of TMPRSS2-ERG
               enhancers to control cell identity gene induction in   gene rearrangements in prostate cancer. Cell Rep, 22: 796–808.
               adipogenesis and myogenesis. Nat Commun, 8: 2217.
                                                                  https://doi.org/10.1016/j.celrep.2017.12.078
               https://doi.org/10.1038/s41467-017-02403-5
                                                               35.  Schultz LB, Chehab NH, Malikzay A,  et al., 2000, p53
            24.  Drumond-Bock AL, Bieniasz M, 2021, The role of distinct   binding protein 1  (53BP1) is an early participant in the
               BRD4 isoforms and their contribution to high-grade serous   cellular response to DNA double-strand breaks. J Cell Biol,
               ovarian carcinoma pathogenesis. Mol Cancer, 20: 145.  151: 1381–1390.
               https://doi.org/10.1186/s12943-021-01424-5         https://doi.org/10.1083/jcb.151.7.1381
            25.  Shi J, Vakoc CR, 2014, The mechanisms behind the   36.  Wang B, Matsuoka S, Carpenter PB,  et al., 2002, 53BP1,
               therapeutic activity of BET bromodomain inhibition. Mol   a mediator of the DNA damage checkpoint.  Science,
               Cell, 54: 728–736.                                 298: 1435–1438.
               https://doi.org/10.1016/j.molcel.2014.05.016       https://doi.org/10.1126/science.1076182
            26.  Wu SY, Lee AY, Hou SY, et al, 2006, Brd4 links chromatin   37.  Sabari BR, Dall’Agnese A, Boija A, et al., 2018, Coactivator
               targeting to HPV transcriptional silencing.  Genes Dev,   condensation at super-enhancers links phase separation and
               20: 2383–2396.                                     gene control. Science, 361: eaar3958.
               https://doi.org/10.1101/gad.1448206                https://doi.org/10.1126/science.aar3958
            27.  Karr JP, Ferrie JJ, Tjian R,  et al., 2021, The transcription   38.  Floyd SR, Pacold ME, Huang Q,  et al., 2013, The
               factor activity gradient (TAG) model: Contemplating a   bromodomain protein Brd4 insulates chromatin from DNA
               contact-independent mechanism for enhancer-promoter   damage signalling. Nature, 498: 246–225.
               communication. Gene Dev, 36: 7–16.
                                                                  https://doi.org/10.1038/nature12147
               https://doi.org/10.1101/gad.349160.121
                                                               39.  Zhang J, Dulak AM, Hattersley MM,  et al., 2018, BRD4
            28.  Winter  GE,  Mayer  A,  Buckley  DL,  et al.,  2017,  BET   facilitates replication stress-induced DNA damage response.
               bromodomain  proteins  function  as  master  transcription   Oncogene, 37: 3763–3777.
               elongation factors independent of CDK9 recruitment. Mol      https://doi.org/10.1038/s41388-018-0194-3
               Cell, 67: 5–18.e19.
                                                               40.  Zeman MK, Cimprich KA, 2014, Causes and consequences
               https://doi.org/10.1016/j.molcel.2017.06.00
                                                                  of replication stress. Nat Cell Biol, 16: 2–9.
            29.  Rahnamoun H, Lee J, Sun Z, et al., 2018, RNAs interact with      https://doi.org/10.1038/ncb2897
               BRD4 to promote enhanced chromatin engagement and
               transcription activation. Nat Struct Mol Biol, 25: 687–697.   41.  Zhou BB, Bartek J, 2004, Targeting the checkpoint kinases:
               https://doi.org/10.1038/s41594-018-0102-0          Chemosensitization versus chemoprotection.  Nat Rev
                                                                  Cancer, 4: 216–225.
            30.  Bressin A, Jasnovidova O, Arnold M,  et al., 2023, High-
               sensitive nascent transcript sequencing reveals BRD4-     https://doi.org/10.1038/nrc1296
               specific  control  of  widespread  enhancer  and  target  gene   42.  Gelot C, Magdalou I, Lopez BS, 2015, Replication stress in
               transcription. Nat Commun, 14: 4971.
                                                                  mammalian  cells  and  its  consequences  for  mitosis.  Genes
               https://doi.org/10.1038/s41467-023-40633-y         (Basel), 6: 267–298.
            31.  Mani RS, Chinnaiyan AM, 2010, Triggers for genomic      https://doi.org/10.3390/genes6020267
               rearrangements: Insights into genomic, cellular and   43.  Cheung-Ong K, Giaever G, Nislow C, 2013, DNA-damaging
               environmental influences. Nat Rev Genet, 11: 819–829.
                                                                  agents in cancer chemotherapy: Serendipity and chemical
               https://doi.org/10.1038/nrg2883                    biology. Chem Biol, 20: 648–659.
            32.  Misteli T, Soutoglou E, 2009, The emerging role of nuclear      https://doi.org/10.1016/j.chembiol.2013.04.007


            Volume 2 Issue 3 (2023)                         9                        https://doi.org/10.36922/gtm.1442
   25   26   27   28   29   30   31   32   33   34   35