Page 83 - GTM-3-3
P. 83

Global Translational Medicine                               Graphene oxide in cancer drug delivery applications



               doi: 10.1186/s12302-023-00814-4                    Functionalization of Graphene: Covalent and non-covalent
                                                                  approaches,  derivatives and  applications.  Chem Rev.
            16.  Hummers WS, Offeman RE. Preparation of graphitic oxide.
               J Am Chem Soc. 1958;80:1339.                       2012;112:6156-6214.
               doi: 10.1021/ja01539a017                           doi: 10.1021/cr3000412
            17.  Yu H, Zhang B, Bulin C, Li R, Xing R. High-efficient   28.  Liu J, Chen S, Liu Y, Zhao B. Progress in preparation,
               synthesis of graphene oxide based on improved hummers   characterization, surface  functional modification of
               method. Sci Rep. 2016;6:1-7.                       graphene oxide: A review. J Saudi Chem Soc. 2022;26:101560.
               doi: 10.1038/srep36143                             doi: 10.1016/j.jscs.2022.101560
            18.  Chen H, Du W, Liu J, Qu L, Li C. Efficient room-temperature   29.  Xiao Y, Pang YX, Yan Y, et al. Synthesis and functionalization
               production  of  high-quality  graphene  by  introducing   of  graphene materials  for biomedical applications: Recent
               removable oxygen functional groups to the precursor. Chem   advances, challenges, and perspectives.  Adv  Sci  (Weinh).
               Sci. 2019;10:1244-1253.                            2023;10:e2205292.
               doi: 10.1039/c8sc03695k                            doi: 10.1002/advs.202205292
            19.  Guo C, Cai Y, Zhao H, et al. Efficient synthesis of graphene   30.  Shang Y, Zhang D, Liu Y, Guo C. Preliminary comparison of
               oxide by Hummers method assisted with an electric field.   different reduction methods of graphene oxide. Bull Mater
               Mater Res Express. 2019;6:055602.                  Sci. 2015;38:7-12.
               doi: 10.1088/2053-1591/ab023d                      doi: 10.1007/s12034-014-0794-7
            20.  Marcano DC, Kosynkin DV, Berlin JM,  et al. Improved   31.  Wojtoniszak M, Mijowska E. Controlled oxidation of
               synthesis of graphene oxide. ACS Nano. 2010;4:4806-4814.  graphite to  graphene oxide with novel oxidants in a bulk
                                                                  scale. J Nanopart Res. 2012;14:1248.
               doi: 10.1021/nn1006368
                                                                  doi: 10.1007/s11051-012-1248-z
            21.  Kim F, Cote LJ, Huang J. Graphene oxide: Surface activity and
               two‐dimensional assembly. Adv Mater. 2010;22:1954-1958.  32.  Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry
                                                                  of graphene oxide. Chem Soc Rev. 2010;39:228-240.
               doi: 10.1002/adma.200903932
                                                                  doi: 10.1039/b917103g
            22.  Thinh DB, Dat NM, Tuyen NNK,  et al. A  review of
               silver‐dopped  graphene oxide nanocomposite: Synthesis   33.  Peng L, Xu Z, Liu Z, et al. An iron-based green approach
               and  multifunctional  applications.  Vietnam J Chem.   to 1-h production of single-layer  graphene oxide.  Nat
               2022;60:553-570.                                   Commun. 2015;6:5716.
               doi: 10.1002/vjch.202200034                     34.  Yu  C,  Wang  CF, Chen S.  Facile access  to  graphene  oxide
                                                                  from ferro-induced oxidation. Sci Rep. 2016;6:17071.
            23.  Méndez-Lozano N, Pérez-Reynoso F, González-Gutiérrez C.
               Eco-friendly  approach for  graphene  oxide synthesis  by      doi: 10.1038/srep17071
               modified hummers method. Materials (Basel). 2022;15:7228.  35.  Ranjan P, Agrawal S, Sinha A, et al. A low-cost non-explosive
               doi: 10.3390/ma15207228                            synthesis of  graphene oxide for scalable applications.  Sci
                                                                  Rep. 2018;8:1-13.
            24.  Olanipekun O, Oyefusi A, Neelgund GM, Oki A. Synthesis
               and characterization of reduced  graphite oxide-polymer      doi: 10.1038/s41598-018-30613-4
               composites and their application in adsorption of lead.   36.  Pei S, Wei Q, Huang K, Cheng HM, Ren W. Green synthesis
               Spectrochim Acta A Mol Biomol Spectrosc. 2015;149:991-996.  of  graphene oxide by seconds timescale water electrolytic
               doi: 10.1016/j.saa.2015.04.071                     oxidation. Nat Commun. 2018;9:1-9.
            25.  Yadav N, Lochab B. A comparative study of graphene oxide:      doi: 10.1038/s41467-017-02479-z
               Hummers, intermediate and improved method. Flat Chem.   37.  Ahmed A, Singh A, Young SJ, Gupta V, Singh M, Arya S.
               2019;13:40-49.                                     Synthesis techniques and advances in sensing applications
               doi: 10.1016/j.flatc.2019.02.001                   of reduced  graphene oxide (rGO) composites: A  review.
                                                                  Compos Part A Appl Sci Manuf. 2023;165:107373.
            26.  Zahed M, Parsamehr PS, Tofighy MA, Mohammadi T.
               Synthesis and functionalization of graphene oxide (GO) for      doi: 10.1016/j.compositesa.2022.107373
               salty water desalination as adsorbent. Chem Eng Res Design.   38.  De Silva KK, Huang HH, Joshi RK, Yoshimura M. Chemical
               2018;138:358-365.                                  reduction of graphene oxide using green reductants. Carbon.
               doi: 10.1016/j.cherd.2018.08.022                   2017;119:190-199.
            27.  Georgakilas V, Otyepka M, Bourlinos AB,  et al.      doi: 10.1016/j.carbon.2017.04.025


            Volume 3 Issue 3 (2024)                         9                               doi: 10.36922/gtm.4602
   78   79   80   81   82   83   84   85   86   87   88