Page 84 - GTM-3-3
P. 84
Global Translational Medicine Graphene oxide in cancer drug delivery applications
39. Kuang B, Song W, Ning M, et al. Chemical reduction functionalized with folic acid as nanocarrier for targeted
dependent dielectric properties and dielectric loss delivery of methotrexate. Pharmaceutics. 2024;16:837.
mechanism of reduced graphene oxide. Carbon. doi: 10.3390/pharmaceutics16060837
2018;127:209-217.
51. Dash BS, Lu YJ, Huang YS, Chen JP. Chitosan-coated
doi: 10.1016/j.carbon.2017.10.092 magnetic graphene oxide for targeted delivery of doxorubicin
40. Jose PP, Kala MS, Kalarikkal N, Thomas S. Reduced as a nanomedicine approach to treat glioblastoma. Int J Biol
graphene oxide produced by chemical and hydrothermal Macromol. 2024;260:129401.
methods. Mater Today Proc. 2018;5:16306-16312. doi: 10.1016/j.ijbiomac.2024.129401
doi: 10.1016/j.matpr.2018.05.124 52. Shirvalilou S, Khoei S, Khoee S, Raoufi NJ, Karimi MR,
41. Khan MU, Shaida MA. Reduction mechanism of graphene Shakeri-Zadeh A. Development of a magnetic nano-
oxide including various parameters affecting the C/O ratio. graphene oxide carrier for improved glioma-targeted drug
Mater Today Commun. 2023l;36:106577. delivery and imaging: In vitro and in vivo evaluations. Chem
Biol Interact. 2018;295:97-108.
doi: 10.1016/j.mtcomm.2023.106577
doi: 10.1016/j.cbi.2018.08.027
42. Thakur S, Karak N. Alternative methods and nature-based
reagents for the reduction of graphene oxide: A review. 53. Su X, Chan C, Shi J, et al. A graphene quantum dot@Fe O 4
3
Carbon. 2015;94:224-242. @SiO based nanoprobe for drug delivery sensing and
2
dual-modal fluorescence and MRI imaging in cancer cells.
doi: 10.1016/j.carbon.2015.06.030 Biosens Bioelectron. 2017;92:489-95.
43. Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH. Thermal doi: 10.1016/j.bios.2016.10.076
stability of graphite oxide. Chem Phys Lett. 2009;470:255-258.
54. Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C.
doi: 10.1016/j.cplett.2009.01.050 A review of the current state of magnetic force microscopy
44. Das P, Ibrahim S, Chakraborty K, Ghosh S, Pal T. Stepwise to unravel the magnetic properties of nanomaterials applied
reduction of graphene oxide and studies on defect-controlled in biological systems and future directions for quantum
physical properties. Sci Rep. 2024;14:294. technologies. Nanomaterials (Basel). 2023;13:2585.
doi: 10.1038/s41598-023-51040-0 doi: 10.3390/nano13182585
45. Yar A, Dennis JO, Mohamed Saheed MS, et al. Physical 55. Pham TT, Whelan B, Oborn BM, et al. Magnetic resonance
reduction of graphene oxide for supercapacitive charge imaging (MRI) guided proton therapy: A review of the
storage. J Alloys Compd. 2020;822:153636. clinical challenges, potential benefits and pathway to
implementation. Radiother Oncol. 2022;170:37-47.
doi: 10.1016/j.jallcom.2019.153636
doi: 10.1016/j.radonc.2022.02.031
46. Alemi F, Zarezadeh R, Sadigh AR, et al. Graphene oxide and
reduced graphene oxide: Efficient cargo platforms for cancer 56. Wang K, Xu X, Li Y, et al. Preparation Fe O @chitosan-
4
3
theranostics. J Drug Deliv Sci Technol. 2020;60:101974. graphene quantum dots nanocomposites for fluorescence
and magnetic resonance imaging. Chem Phys Lett.
doi: 10.1016/j.jddst.2020.101974 2021;783:139060.
47. Sharma H, Mondal S. Functionalized graphene oxide for doi: 10.1016/j.cplett.2021.139060
chemotherapeutic drug delivery and cancer treatment:
A promising material in nanomedicine. Int J Mol Sci. 57. Javadian S, Najafi K, Sadrpoor SM, Ektefa F, Dalir N,
2020;21:6280. Nikkhah M. Graphene quantum dots based magnetic
nanoparticles as a promising delivery system for controlled
doi: 10.3390/ijms21176280 doxorubicin release. J Mol Liq. 2021;331:115746.
48. Bagheri B, Surwase SS, Lee SS, et al. Carbon-based doi: 10.1016/j.molliq.2021.115746
nanostructures for cancer therapy and drug delivery
applications. J Mater Chem B. 2022;10:9944-9967. 58. Batool M, Qazi RM, Mudassir MA, et al. Titania-graphene
oxide nanocomposite-based philadelphia-positive leukemia
doi: 10.1039/D2TB01741E therapy. ACS Appl Bio Mater. 2024;7:4352-4365.
49. Maiti D, Tong X, Mou X, Yang K. Carbon-based doi: 10.1021/acsabm.4c00207
nanomaterials for biomedical applications: A recent study. 59. Shen JJ, Xue SJ, Mei ZH, et al. Synthesis, characterization,
Front Pharmacol. 2019;9:1401.
and efficacy evaluation of a PH-responsive Fe-MOF@GO
doi: 10.3389/fphar.2018.01401 composite drug delivery system for the treating colorectal
cancer. Heliyon. 2024;10:e28066.
50. Yanikoglu R, Karakas CY, Ciftci F, et al. Development
of graphene oxide-based anticancer drug combination doi: 10.1016/j.heliyon.2024.e28066
Volume 3 Issue 3 (2024) 10 doi: 10.36922/gtm.4602

