Page 84 - GTM-3-3
P. 84

Global Translational Medicine                               Graphene oxide in cancer drug delivery applications



            39.  Kuang  B,  Song  W,  Ning  M,  et al.  Chemical  reduction   functionalized with folic acid as nanocarrier for targeted
               dependent dielectric properties and dielectric loss   delivery of methotrexate. Pharmaceutics. 2024;16:837.
               mechanism of reduced  graphene oxide.  Carbon.      doi: 10.3390/pharmaceutics16060837
               2018;127:209-217.
                                                               51.  Dash BS, Lu YJ, Huang YS, Chen JP. Chitosan-coated
               doi: 10.1016/j.carbon.2017.10.092                  magnetic graphene oxide for targeted delivery of doxorubicin
            40.  Jose PP, Kala MS, Kalarikkal N, Thomas S. Reduced   as a nanomedicine approach to treat glioblastoma. Int J Biol
               graphene oxide produced by chemical and hydrothermal   Macromol. 2024;260:129401.
               methods. Mater Today Proc. 2018;5:16306-16312.     doi: 10.1016/j.ijbiomac.2024.129401
               doi: 10.1016/j.matpr.2018.05.124                52.  Shirvalilou S, Khoei S, Khoee S, Raoufi NJ, Karimi MR,
            41.  Khan MU, Shaida MA. Reduction mechanism of graphene   Shakeri-Zadeh A. Development of a magnetic nano-
               oxide including various parameters affecting the C/O ratio.   graphene oxide carrier for improved glioma-targeted drug
               Mater Today Commun. 2023l;36:106577.               delivery and imaging: In vitro and in vivo evaluations. Chem
                                                                  Biol Interact. 2018;295:97-108.
               doi: 10.1016/j.mtcomm.2023.106577
                                                                  doi: 10.1016/j.cbi.2018.08.027
            42.  Thakur S, Karak N. Alternative methods and nature-based
               reagents  for  the  reduction  of  graphene  oxide:  A  review.   53.  Su X, Chan C, Shi J, et al. A graphene quantum dot@Fe O   4
                                                                                                           3
               Carbon. 2015;94:224-242.                           @SiO  based nanoprobe for drug delivery sensing and
                                                                      2
                                                                  dual-modal fluorescence and MRI imaging in cancer cells.
               doi: 10.1016/j.carbon.2015.06.030                  Biosens Bioelectron. 2017;92:489-95.
            43.  Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH. Thermal      doi: 10.1016/j.bios.2016.10.076
               stability of graphite oxide. Chem Phys Lett. 2009;470:255-258.
                                                               54.  Winkler  R,  Ciria  M,  Ahmad  M,  Plank  H,  Marcuello  C.
               doi: 10.1016/j.cplett.2009.01.050                  A review of the current state of magnetic force microscopy
            44.  Das P, Ibrahim S, Chakraborty K, Ghosh S, Pal T. Stepwise   to unravel the magnetic properties of nanomaterials applied
               reduction of graphene oxide and studies on defect-controlled   in biological systems and future directions for quantum
               physical properties. Sci Rep. 2024;14:294.         technologies. Nanomaterials (Basel). 2023;13:2585.
               doi: 10.1038/s41598-023-51040-0                    doi: 10.3390/nano13182585
            45.  Yar A, Dennis JO, Mohamed Saheed MS,  et al. Physical   55.  Pham TT, Whelan B, Oborn BM, et al. Magnetic resonance
               reduction of  graphene oxide for supercapacitive charge   imaging (MRI) guided proton therapy: A  review of the
               storage. J Alloys Compd. 2020;822:153636.          clinical challenges, potential benefits and pathway to
                                                                  implementation. Radiother Oncol. 2022;170:37-47.
               doi: 10.1016/j.jallcom.2019.153636
                                                                  doi: 10.1016/j.radonc.2022.02.031
            46.  Alemi F, Zarezadeh R, Sadigh AR, et al. Graphene oxide and
               reduced graphene oxide: Efficient cargo platforms for cancer   56.  Wang K, Xu X, Li Y,  et al. Preparation Fe O @chitosan-
                                                                                                     4
                                                                                                   3
               theranostics. J Drug Deliv Sci Technol. 2020;60:101974.  graphene  quantum  dots  nanocomposites  for  fluorescence
                                                                  and magnetic resonance imaging.  Chem Phys Lett.
               doi: 10.1016/j.jddst.2020.101974                   2021;783:139060.
            47.  Sharma H, Mondal S. Functionalized  graphene oxide for      doi: 10.1016/j.cplett.2021.139060
               chemotherapeutic drug delivery and cancer treatment:
               A  promising material in nanomedicine.  Int J Mol Sci.   57.  Javadian S, Najafi  K, Sadrpoor SM, Ektefa  F,  Dalir N,
               2020;21:6280.                                      Nikkhah M.  Graphene quantum dots based magnetic
                                                                  nanoparticles as a promising delivery system for controlled
               doi: 10.3390/ijms21176280                          doxorubicin release. J Mol Liq. 2021;331:115746.
            48.  Bagheri B, Surwase  SS, Lee  SS,  et al.  Carbon-based      doi: 10.1016/j.molliq.2021.115746
               nanostructures for cancer therapy and drug delivery
               applications. J Mater Chem B. 2022;10:9944-9967.  58.  Batool M, Qazi RM, Mudassir MA, et al. Titania-graphene
                                                                  oxide nanocomposite-based philadelphia-positive leukemia
               doi: 10.1039/D2TB01741E                            therapy. ACS Appl Bio Mater. 2024;7:4352-4365.
            49.  Maiti  D,  Tong  X,  Mou  X,  Yang  K.  Carbon-based      doi: 10.1021/acsabm.4c00207
               nanomaterials for biomedical applications: A recent study.   59.  Shen JJ, Xue SJ, Mei ZH, et al. Synthesis, characterization,
               Front Pharmacol. 2019;9:1401.
                                                                  and efficacy evaluation of a PH-responsive Fe-MOF@GO
               doi: 10.3389/fphar.2018.01401                      composite drug delivery system for the treating colorectal
                                                                  cancer. Heliyon. 2024;10:e28066.
            50.  Yanikoglu R, Karakas CY, Ciftci F,  et  al. Development
               of  graphene oxide-based anticancer drug combination      doi: 10.1016/j.heliyon.2024.e28066


            Volume 3 Issue 3 (2024)                         10                              doi: 10.36922/gtm.4602
   79   80   81   82   83   84   85   86   87   88   89