Page 52 - IJAMD-1-2
P. 52

International Journal of AI for
            Materials and Design
                                                                                  A unified ILKM in smart manufacturing


            Funding                                               doi: 10.1016/j.mfglet.2014.12.001

            None.                                              7.   Sisinni  E,  Saifullah  A,  Han  S,  Jennehag  U,  Gidlund  M.
                                                                  Industrial internet of things: Challenges, opportunities, and
            Conflict of interest                                  directions. IEEE Trans Ind Inform. 2018;14(11):4724-4734.

            Jay Lee is an Editorial Board Member of this journal, but      doi: 10.1109/tii.2018.2852491
            was not in any way involved in the editorial and peer-review   8.   Zhao WX, Zhou K, Li J, et al. A Survey of Large Language
            process conducted for this paper, directly or indirectly.   Models. arXiv.org.
            Separately, other authors declared that they have no known      doi: 10.48550/arXiv.2303.18223
            competing financial interests or personal relationships that
            could have influenced the work reported in this paper.  9.   Chang  Y,  Wang  X, Wang  J,  et al.  A  survey  on evaluation
                                                                  of large language models.  ACM Trans  Intell Syst Technol.
            Author contributions                                  2024;15(3):1-45.
            Conceptualization: All authors                        doi: 10.1145/3641289
            Writing – original draft: Hanqi Su                 10.  Raptis TP, Passarella A, Conti M. Data management in
            Writing – review & editing: All authors               industry 4.0: State of the art and open challenges.  IEEE
                                                                  Access. 2019;7:97052-97093.
            Ethics approval and consent to participate            doi: 10.1109/access.2019.2929296
            Not applicable.                                    11.  Shafiq SI, Szczerbicki E, Sanin C. Proposition of the
                                                                  methodology for data acquisition, analysis and visualization
            Consent for publication                               in support of industry 4.0.  Procedia Comput Sci.
            Not applicable.                                       2019;159:1976-1985.
                                                                  doi: 10.1016/j.procs.2019.09.370
            Availability of data
                                                               12.  Jan Z, Ahamed F, Mayer W, et al. Artificial intelligence for
            Not applicable.                                       industry 4.0: Systematic review of applications, challenges,
                                                                  and opportunities. Expert Syst Appl. 2023;216(216):119456.
            References
                                                                  doi: 10.1016/j.eswa.2022.119456
            1.   Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M. Industry
               4.0. Bus Inf Syst Eng. 2014;6(4):239-242.       13.  Goertzel B. Artificial  general  intelligence:  Concept, state
                                                                  of the art, and future prospects.  J  Artif General Intell.
               doi: 10.1007/s12599-014-0334-4                     2014;5(1):1-48.
            2.   Yan J, Meng Y, Lu L, Li L. Industrial big data in an industry      doi: 10.2478/jagi-2014-0001
               4.0 environment: Challenges, schemes, and applications for
               predictive maintenance. IEEE Access. 2017;5:23484-23491.  14.  Yandrapalli V. Revolutionizing supply chains using
                                                                  power  of  generative AI.  Int  J  Res  Publication  Rev.
               doi:10.1109/access.2017.2765544                    2023;4(12):1556-1562.
            3.   Lee  J,  Davari  H,  Singh  J,  Pandhare  V.  Industrial  artificial      doi: 10.55248/gengpi.4.1223.123417
               intelligence for industry 4.0-based manufacturing systems.
               Manuf Lett. 2018;18:20-23.                      15.  Lahat D, Adali T, Jutten C. Multimodal data fusion: An
                                                                  overview of methods, challenges and prospects. Proc IEEE.
               doi: 10.1016/j.mfglet.2018.09.002
                                                                  2015;103(9):1449-1477.
            4.   Sharp M, Ak R, Hedberg T. A survey of the advancing use and      doi: 10.1109/jproc.2015.2460697
               development of machine learning in smart manufacturing.
               J Manuf Syst. 2018;48:170-179.                  16.  Zhang S, Dong L, Li X, et al. Instruction Tuning for Large
                                                                  Language Models: A Survey. arXiv.org.
               doi: 10.1016/j.jmsy.2018.02.004
                                                                  doi: 10.48550/arXiv.2308.10792
            5.   Wang J, Ma Y, Zhang L, Gao RX, Wu D. Deep learning for
               smart  manufacturing:  Methods and  applications.  J  Manuf   17.  Gao Y, Xiong Y, Gao X,  et al. Retrieval-Augmented
               Syst. 2018;48:144-156.                             Generation for Large Language Models: A Survey. arXiv.org.
               doi: 10.1016/j.jmsy.2018.01.003                    doi: 10.48550/arXiv.2312.10997
            6.   Lee J, Bagheri B, Kao HA. A  cyber-physical systems   18.  Christiano PF, Leike J, Brown T, Martic M, Legg S, Amodei D.
               architecture for industry 4.0-based manufacturing systems.   Deep Reinforcement Learning from Human Preferences.
               Manuf Lett. 2015;3:18-23.                          California: Neural Information Processing Systems; 2017.


            Volume 1 Issue 2 (2024)                         46                             doi: 10.36922/ijamd.3681
   47   48   49   50   51   52   53   54   55   56   57