Page 53 - IJAMD-1-2
P. 53
International Journal of AI for
Materials and Design
A unified ILKM in smart manufacturing
19. Ouyang L, Wu J, Jiang X, et al. Training language models doi: 10.1145/3591300
to follow instructions with human feedback. Adv Neural Inf 23. Reynolds L, McDonell K. Prompt Programming for Large
Process Syst. 2022;35:27730-27744.
Language Models: Beyond the Few-Shot Paradigm. In:
20. Yang F, Zhao P, Wang Z, et al. Empower Large Language Extended Abstracts of the 2021 CHI Conference on Human
Model to Perform Better on Industrial Domain-Specific Factors in Computing Systems; 2021.
Question Answering. In: Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing: doi: 10.1145/3411763.3451760
Industry Track. Singapore. Association for Computational 24. Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need.
Linguistics; 2023. p. 294-312. United States: Neural Information Processing Systems; 2017.
doi: 10.18653/v1/2023.emnlp-industry.29 25. Chen M, Tworek J, Jun H, et al. Evaluating Large Language
Models Trained on Code. arXiv:210703374; 2021.
21. Shazeer N, Mirhoseini A, Maziarz K, et al. Outrageously
Large Neural Networks: The Sparsely-Gated Mixture-of- doi: https://arxiv.org/abs/2107.03374
Experts Layer. arXiv:170106538.
26. Xu FF, Alon U, Neubig G, Hellendoorn VJ. A Systematic
doi: https://arxiv.org/abs/1701.06538 Evaluation of Large Language Models of Code. In:
Proceedings of the 6 ACM SIGPLAN International
th
22. Beurer-Kellner L, Fischer M, Vechev M. Prompting is
programming: A query language for large language models. Symposium on Machine Programming; 2022.
Proc ACM Program Lang. 2023;7:1946-1969. doi: 10.1145/3520312.353486
Volume 1 Issue 2 (2024) 47 doi: 10.36922/ijamd.3681

