Page 65 - IJAMD-1-2
P. 65

International Journal of AI for
            Materials and Design
                                                                             AI-assisted ML monitoring in additive auxetics


            17.  Ennaceur C, Laksimi A, Hervé C, Cherfaoui M. Monitoring   27.  Qin  Y,  Singh SC,  Grevemeyer  I, Marjanović  M,  Roger
               crack growth in pressure vessel steels by the acoustic   Buck W. Discovery of flat seismic reflections in the mantle
               emission technique and the method of potential difference.   beneath the young Juan de Fuca Plate.  Nat Commun.
               Int J Press Vessels Piping. 2006;83(3):197-204.    2020;11(1):4122.
               doi: 10.1016/j.ijpvp.2005.12.004                   doi: 10.1038/s41467-020-17946-3
            18.  Wang JY, Guo JY. Damage investigation of ultra high   28.  Yang Z, Yabansu YC, Jha D,  et al. Establishing structure-
               performance concrete under direct tensile test using acoustic   property localization linkages for elastic deformation of
               emission techniques. Cem Concr Compos. 2018;88:17-28.  three-dimensional high contrast composites using deep
                                                                  learning approaches. Acta Mater. 2019;166:335-345.
               doi: 10.1016/j.cemconcomp.2018.01.007
                                                                  doi: 10.1016/j.actamat.2018.12.045
            19.  Wen TK, Yin CC. Crack detection in photovoltaic cells by
               interferometric analysis of electronic speckle patterns.  Sol   29.  Fu T, Monaco F, Li J,  et al. Deep-learning-enabled crack
               Energy Mater Sol Cells. 2012;98:216-223.           detection and analysis in commercial lithium-ion battery
                                                                  cathodes. Adv Funct Mater. 2022;32(39):2203070.
               doi: 10.1016/j.solmat.2011.10.034
                                                                  doi: 10.1002/adfm.202203070
            20.  Zarate EA, Custodio GE, Treviño-Palacios CG, Rodríguez-
               Vera R, Puga-Soberanes HJ. Defect detection in metals   30.  Park D, Park M, Ryu S. Expanding design spaces in digital
               using electronic speckle pattern interferometry. Sol Energy   composite materials: A multi-input deep learning approach
               Mater Sol Cells. 2005;88(2):217-225.               enhanced by transfer learning and multi-kernel network.
                                                                  Adv Theory Simul. 2023;6(11):2300465.
               doi: 10.1016/j.solmat.2004.03.009
                                                                  doi: 10.1002/adts.202300465
            21.  Liang Z, Qin F, Zheng Y, Zhang Z, Cao W. Noncontact
               thermometry based on downconversion luminescence from   31.  Ammasai Sengodan G. Prediction of two-phase composite
               Eu  doped LiNbO  single crystal.  Sens Actuators A Phys.   microstructure properties through deep learning of reduced
                 3+
                             3
               2016;238:215-219.                                  dimensional structure-response data.  Compos B Eng.
                                                                  2021;225:109282.
               doi: 10.1016/j.sna.2015.12.018
                                                                  doi: 10.1016/j.compositesb.2021.109282
            22.  Antić Ž, Dramićanin MD, Prashanthi K, Jovanović D,
               Kuzman S, Thundat T. Pulsed laser deposited dysprosium-  32.  Lee J, Park D, Lee M, et al. Machine learning-based inverse
               doped gadolinium–vanadate thin films for noncontact,   design methods considering data characteristics and design
               self-referencing  luminescence  thermometry.  Adv Mater.   space size in materials design and manufacturing: A review.
               2016;28(35):7745-7752.                             Mater Horiz. 2023;10(12):5436-5456.
               doi: 10.1002/adma.201601176                        doi: 10.1039/d3mh00039g
            23.  Schlothauer JC, Grabmayer K, Hintersteiner I, Wallner GM,   33.  Tan RK, Zhang NL, Ye W. A deep learning-based method for
               Röder  B. Non-destructive 2D-luminescence detection   the design of microstructural materials. Struct Multidiscip
               of EVA in aged PV modules: Correlation to calorimetric   Optim. 2020;61(4):1417-1438.
               properties, additive distribution and a clue to aging      doi: 10.1007/s00158-019-02424-2
               parameters. Sol Energy Mater Sol Cells. 2017;159:307-317.
                                                               34.  Li  HN, Ren  L, Jia  ZG, Yi  TH, Li  DS. State-of-the-art  in
               doi: 10.1016/j.solmat.2016.09.011                  structural health monitoring of large and complex civil
            24.  Stepanova LV, Yakovleva EM. Asymptotic stress field in the   infrastructures. J Civil Struct Health Monit. 2016;6(1):3-16.
               vicinity of a mixed-mode crack under plane stress conditions      doi: 10.1007/s13349-015-0108-9
               for a power-law hardening material. J Mech Mater Struct.
               2015;10(3):367-393.                             35.  Diamanti K, Soutis C. Structural health monitoring
                                                                  techniques for aircraft composite structures. Prog Aerosp Sci.
               doi: 10.2140/jomms.2015.10.367                     2010;46(8):342-352.
            25.  Berto F, Lazzarin P. Recent developments in brittle and quasi-     doi: 10.1016/j.paerosci.2010.05.001
               brittle failure assessment of engineering materials by means   36.  Ye XW, Su YH, Han JP. Structural health monitoring of
               of local approaches. Mater Sci Eng R Rep. 2014;75(1):1-48
                                                                  civil infrastructure using optical fiber sensing technology:
               doi: 10.1016/j.mser.2013.11.001                    A comprehensive review. Sci World J. 2014;2014:652329.
            26.  Altenbach H, Hitzler L, Johlitz M, Merkel M, Öchsner A,      doi: 10.1155/2014/652329
               editors. Lectures Notes on Advanced Structured Materials 2.   37.  Li C, He Q, Wang Y,  et al. Highly robust and soft
               Vol. 203. Switzerland: Springer Nature; 2024.
                                                                  biohybrid mechanoluminescence for optical signaling and
               doi: 10.1007/978-3-031-49043-9                     illumination. Nat Commun. 2022;13(1):3914.


            Volume 1 Issue 2 (2024)                         59                             doi: 10.36922/ijamd.3539
   60   61   62   63   64   65   66   67   68   69   70