Page 66 - IJAMD-1-2
P. 66

International Journal of AI for
            Materials and Design
                                                                             AI-assisted ML monitoring in additive auxetics


               doi: 10.1038/s41467-022-31705-6                    Processing (ICASSP). IEEE; 2021. p. 6628-6632.
            38.  Song H, Park E, Kim HJ, et al. Free-form optimization of      doi: 10.1109/ICASSP39728.2021.9413831
               pattern shape for improving mechanical characteristics of a
               concentric tube. Mater Des. 2023;230:111974.    43.  Laureto JJ, Pearce JM. Anisotropic mechanical property
                                                                  variance between ASTM D638-14 type I and type IV fused
               doi: 10.1016/j.matdes.2023.111974                  filament fabricated specimens. Polym Test. 2018;68:294-301.
            39.  Lee S, Choi W, Park JW,  et al. Machine learning-enabled      doi: 10.1016/j.polymertesting.2018.04.029
               development of high performance gradient-index phononic
               crystals for energy focusing and harvesting. Nano Energy.   44.  Yoo JC, Han TH. Fast normalized cross-correlation. Circuits
               2022;103:107846.                                   Syst Signal Process. 2009;28(6):819-843.
               doi: 10.1016/j.nanoen.2022.107846                  doi: 10.1007/s00034-009-9130-7
            40.  Park  D,  Jung  J,  Gu  GX,  Ryu  S.  A  generalizable  and   45.  Song H, Timilsina S, Jung J, Kim TS, Ryu S. Improving the
               interpretable deep learning model to improve the prediction   sensitivity of the mechanoluminescence composite through
               accuracy of strain fields in grid composites.  Mater  Des.   functionalization for structural health monitoring.  ACS
               2022;223:111192.                                   Appl Mater Interfaces. 2022;14(26):30205-30215.
               doi: 10.1016/j.matdes.2022.111192                  doi: 10.1021/acsami.2c07286
            41.  Luján-García  JE,  Yáñez-Márquez  C,  Villuendas-Rey  Y,   46.  Qi C, Jiang F, Yang S. Advanced honeycomb designs for
               Camacho-Nieto O. A  transfer learning method for   improving mechanical properties: A review. Compos B Eng.
               pneumonia classification and visualization. Appl Sci (Basel).   2021;227:109393.
               2020;10(8):2908.                                   doi: 10.1016/j.compositesb.2021.109393
               doi: 10.3390/APP10082908                        47.  Han D. Comparison of commonly used image interpolation
                                                                                          nd
            42.  Reddy CKA, Xiaochuan N, Zou W, et al. ICASSP 2021 Deep   methods. In: Proceedings of the 2  International Conference
               Noise Suppression Challenge. In:  Proceedings of the IEEE   on Computer Science and Electronics Engineering (ICCSEE
               International Conference on Acoustics, Speech and Signal   2013). Atlantis Press; 2013. p. 1556-1559.












































            Volume 1 Issue 2 (2024)                         60                             doi: 10.36922/ijamd.3539
   61   62   63   64   65   66   67   68   69   70   71