Page 66 - IJAMD-1-2
P. 66
International Journal of AI for
Materials and Design
AI-assisted ML monitoring in additive auxetics
doi: 10.1038/s41467-022-31705-6 Processing (ICASSP). IEEE; 2021. p. 6628-6632.
38. Song H, Park E, Kim HJ, et al. Free-form optimization of doi: 10.1109/ICASSP39728.2021.9413831
pattern shape for improving mechanical characteristics of a
concentric tube. Mater Des. 2023;230:111974. 43. Laureto JJ, Pearce JM. Anisotropic mechanical property
variance between ASTM D638-14 type I and type IV fused
doi: 10.1016/j.matdes.2023.111974 filament fabricated specimens. Polym Test. 2018;68:294-301.
39. Lee S, Choi W, Park JW, et al. Machine learning-enabled doi: 10.1016/j.polymertesting.2018.04.029
development of high performance gradient-index phononic
crystals for energy focusing and harvesting. Nano Energy. 44. Yoo JC, Han TH. Fast normalized cross-correlation. Circuits
2022;103:107846. Syst Signal Process. 2009;28(6):819-843.
doi: 10.1016/j.nanoen.2022.107846 doi: 10.1007/s00034-009-9130-7
40. Park D, Jung J, Gu GX, Ryu S. A generalizable and 45. Song H, Timilsina S, Jung J, Kim TS, Ryu S. Improving the
interpretable deep learning model to improve the prediction sensitivity of the mechanoluminescence composite through
accuracy of strain fields in grid composites. Mater Des. functionalization for structural health monitoring. ACS
2022;223:111192. Appl Mater Interfaces. 2022;14(26):30205-30215.
doi: 10.1016/j.matdes.2022.111192 doi: 10.1021/acsami.2c07286
41. Luján-García JE, Yáñez-Márquez C, Villuendas-Rey Y, 46. Qi C, Jiang F, Yang S. Advanced honeycomb designs for
Camacho-Nieto O. A transfer learning method for improving mechanical properties: A review. Compos B Eng.
pneumonia classification and visualization. Appl Sci (Basel). 2021;227:109393.
2020;10(8):2908. doi: 10.1016/j.compositesb.2021.109393
doi: 10.3390/APP10082908 47. Han D. Comparison of commonly used image interpolation
nd
42. Reddy CKA, Xiaochuan N, Zou W, et al. ICASSP 2021 Deep methods. In: Proceedings of the 2 International Conference
Noise Suppression Challenge. In: Proceedings of the IEEE on Computer Science and Electronics Engineering (ICCSEE
International Conference on Acoustics, Speech and Signal 2013). Atlantis Press; 2013. p. 1556-1559.
Volume 1 Issue 2 (2024) 60 doi: 10.36922/ijamd.3539

