Page 34 - IJAMD-2-3
P. 34
International Journal of AI for
Materials and Design AI applications in composite materials
composites. Compos Struct. 2023;321:117197. doi: 10.1002/pc.29055
doi: 10.1016/j.compstruct.2023.117197 106. Daghigh V, Ramezani SB, Daghigh H, Lacy TE Jr. Explainable
artificial intelligence prediction of defect characterization in
94. Niaki SA, Haghighat E, Campbell T, Poursartip A, Vaziri R.
Physics-informed neural network for modelling the composite materials. Compos Sci Technol. 2024;256:110759.
thermochemical curing process of composite-tool systems doi: 10.3390/asi7060121
during manufacture. Comput Methods Appl Mech Eng.
2021;384:113959. 107. Song Y, Kim K, Park S, Park SK, Park J. Analysis of load-
bearing capacity factors of textile-reinforced mortar using
95. Yuan L, Li J, Wang B, et al. Temperature dynamics and multilayer perceptron and explainable artificial intelligence.
mechanical properties analysis of carbon fiber epoxy Construct Build Mater. 2023;363:129560.
composites radiated by nuclear explosion simulated light
source. Sci Rep. 2025;15(1):1799. doi: 10.1016/j.conbuildmat.2022.129560
108. Kulasooriya W, Ranasinghe R, Perera US, Thisovithan P,
doi: 10.1038/s41598-025-85959-3
Ekanayake I, Meddage D. Modeling strength characteristics
96. Wang S, Sankaran S, Wang H, Perdikaris P. An Expert’s of basalt fiber reinforced concrete using multiple explainable
Guide to Training Physics-Informed Neural Networks. [arXiv machine learning with a graphical user interface. Sci
Preprint]; 2023. Rep. 2023;13(1):13138.
97. Fang Z. A high-efficient hybrid physics-informed neural doi: 10.1038/s41598-023-40513-x
networks based on convolutional neural network. IEEE
Trans Neural Netw Learn Syst. 2021;33(10):5514-5526. 109. Meister S, Wermes M, Stüve J, Groves RM. Investigations
on explainable artificial intelligence methods for the
doi: 10.1109/TNNLS.2021.3070878 deep learning classification of fibre layup defect in the
98. Nascimento RG, Corbetta M, Kulkarni CS, Viana FA. Hybrid automated composite manufacturing. Compos Part B Eng.
physics-informed neural networks for lithium-ion battery 2021;224:109160.
modeling and prognosis. J Power Sources. 2021;513:230526. doi: 10.1016/j.compositesb.2021.109160
99. Hanna JM, Aguado JV, Comas-Cardona S, Le Guennec Y, 110. Gupta S, Mukhopadhyay T, Kushvaha V. Microstructural
Borzacchiello D. A Self-Supervised Learning Framework image based convolutional neural networks for efficient
Based on Physics-Informed and Convolutional Neural prediction of full-field stress maps in short fiber polymer
Networks to Identify Local Anisotropic Permeability Tensor composites. Defence Technol. 2023;24:58-82.
from Textiles 2D Images for Filling Pattern Prediction.
Amsterdam: Elsevier; 2024. doi: 10.1016/j.dt.2022.09.008
100. Korolev D, Schmidt T, Natarajan DK, et al. Hybrid Machine 111. Baidoo-Anu D, Ansah LO. Education in the era of generative
Learning Based Scale Bridging Framework for Permeability artificial intelligence (AI): Understanding the potential
Prediction of Fibrous Structures. [arXiv Preprint]; 2025. benefits of ChatGPT in promoting teaching and learning.
J AI. 2023;7(1):52-62.
101. Gal Y, Islam R, Ghahramani Z. Deep Bayesian Active
Learning with Image Data. In: Proceedings of Machine 112. Fui-Hoon Nah F, Zheng R, Cai J, Siau K, Chen L. Generative
Learning Research; 2017. p. 1183-92. AI and ChatGPT: Applications, Challenges, and AI-Human
Collaboration. United Kingdom: Taylor and Francis; 2023.
102. Xu F, Uszkoreit H, Du Y, Fan W, Zhao D, Zhu J. Explainable p. 277-304.
AI: A Brief Survey on History, Research Areas, Approaches
and Challenges. Berlin: Springer; 2019. p. 563-574. 113. Mescheder L, Nowozin S, Geiger A. Adversarial Variational
Bayes: Unifying Variational Autoencoders and Generative
103. Dwivedi R, Dave D, Naik H, et al. Explainable AI (XAI): Adversarial Networks. In: Proceedings of Machine Learning
Core ideas, techniques, and solutions. ACM Comput Surv. Research; 2017. p. 2391-2400.
2023;55(9):1-33.
114. Mishra A, Krishna Reddy S, Mittal A, Murthy HA.
doi: 10.1145/3561048 A Generative Model for Zero Shot Learning using
104. Yossef M, Noureldin M, Alqabbany A. Explainable artificial Conditional Variational Autoencoders. In: Proceedings
intelligence framework for FRP composites design. Compos of the IEEE Conference on Computer Vision and Pattern
Struct. 2024;341:118190. Recognition (CVPR) Workshops; 2018. p. 2188-2196.
doi: 10.1016/j.compstruct.2024.118190 115. Teimouri A, Li G. Machine Learning-driven discovery
of thermoset shape memory polymers with high glass
105. Azad MM, Kim HS. An explainable artificial intelligence‐
based approach for reliable damage detection in polymer transition temperature using variational autoencoders.
composite structures using deep learning. Polym Compos. J Polym Sci. 2025;63:1095-1107.
2025;46(2):1536-1551. doi: 10.1002/pol.20241095
Volume 2 Issue 3 (2025) 28 doi: 10.36922/IJAMD025210016

