Page 30 - IJAMD-2-3
P. 30

International Journal of AI for
            Materials and Design                                                   AI applications in composite materials



            7.   Soori M, Arezoo B, Dastres R. Artificial intelligence,   Mouritz AP. Energy storage structural composites with
               machine learning and deep learning in advanced robotics, a   integrated lithium‐ion batteries: A  review.  Adv Mater
               review. Cogn Robot. 2023;3:54-70.                  Technol. 2021;6(8):2001059.
               doi: 10.1016/j.cogr.2023.04.001                    doi: 10.1002/admt.202001059
            8.   Brunton SL, Nathan Kutz J, Manohar K, et al. Data-driven   19.  Resor BR.  Definition of a 5MW/61.5  m Wind Turbine Blade
               aerospace engineering: Reframing the industry with   Reference Model. California: Sandia National Laboratories; 2013.
               machine learning. Aiaa J. 2021;59(8):2820-2847.
                                                               20.  Moein MM, Saradar A, Rahmati K, et al. Predictive models
               doi: 10.2514/1.J060131                             for concrete properties using machine learning and deep
            9.   Lingitz L, Gallina V, Ansari F, et al. Lead time prediction using   learning approaches: A review. J Build Eng. 2023;63:105444.
               machine learning algorithms: A case study by a semiconductor      doi: 10.1016/j.jobe.2022.105444
               manufacturer. Procedia CIRP. 2018;72:1051-1056.
                                                               21.  Dijkstra M, Luijten E. From predictive modelling to machine
               doi: 10.1016/j.procir.2018.03.148                  learning and reverse engineering of colloidal self-assembly.
            10.  Hong  H, Kim  S, Kim  W, Kim  W,  Jeong JM,  Kim  SS.   Nat Mater. 2021;20(6):762-773.
               Design optimization of 3D printed kirigami-inspired      doi: 10.1038/s41563-021-01014-2
               composite metamaterials for quasi-zero stiffness using
               deep reinforcement learning integrated with bayesian   22.  Sengar SS, Hasan AB, Kumar S, Carroll F. Generative
               optimization. Compos Struct. 2025;359:119031.      artificial intelligence: A systematic review and applications.
                                                                  Multimed Tools Appl. 2024;84:1-40.
               doi: 10.1016/j.compstruct.2025.119031
                                                                  doi: 10.1007/s11042-024-20016-1
            11.  Hong  H, Kim  W, Kim  W,  Jeong JM,  Kim  S, Kim  SS.
               Machine learning-driven design optimization of buckling-  23.  Sarker IH. AI-based modeling: Techniques, applications and
               induced  quasi-zero  stiffness  metastructures  for  low-  research issues towards automation, intelligent and smart
               frequency vibration isolation.  ACS Appl Mater Interfaces.   systems. SN Comput Sci. 2022;3(2):158.
               2024;16(14):17965-17972.                           doi: 10.1007/s42979-022-01043-x
               doi: 10.1021/acsami.3c18793                     24.  Agatonovic-Kustrin S, Beresford R. Basic concepts
            12.  Hong H, Jeong KI, On SY, Kim W, Kim SS. Structural   of artificial neural network (ANN) modeling and its
               optimization of an arch-structured epoxy/rubber composite   application in  pharmaceutical  research.  J  Pharm Biomed
               vibration isolator using deep Q-value neural network   Anal. 2000;22(5):717-727.
               reinforcement learning. Compos Struct. 2023;323:117506.     doi: 10.1016/S0731-7085(99)00272-1
               doi: 10.1016/j.compstruct.2023.117506           25.  Abiodun OI, Jantan A, Omolara AE, Dada KV,
            13.  Barile C, Casavola C, De Cillis F. Mechanical comparison of   Mohamed NA, Arshad H. State-of-the-art in artificial neural
               new composite materials for aerospace applications. Compos   network applications: A survey. Heliyon. 2018;4(11):e00938.
               Part B Eng. 2019;162:122-128.                      doi: 10.1016/j.heliyon.2018.e00938
               doi: 10.1016/j.compositesb.2018.10.101          26.  Sze V, Chen YH, Yang TJ, Emer JS. Efficient processing of
            14.  Lee J, Lee D, Park J, Choi I, Lim JW, Kim S. Carbon/epoxy   deep neural networks: A tutorial and survey. Proceed IEEE.
               composite foot structure for biped robots. Compos Struct.   2017;105(12):2295-2329.
               2016;140:344-350.                                  doi: 10.1109/JPROC.2017.2761740
               doi: 10.1016/j.compstruct.2016.01.022           27.  Samek W, Montavon G, Lapuschkin S, Anders CJ, Müller KR.
            15.  Bank LC.  Composites for Construction: Structural Design   Explaining deep neural networks and beyond: A  review of
               with FRP Materials. United States: John Wiley and Sons;   methods and applications. Proceed IEEE. 2021;109(3):247-278.
               2006.                                              doi: 10.1109/JPROC.2021.3060483
            16.  Sarfraz MS, Hong H, Kim SS. Recent developments in the   28.  Larochelle H, Bengio Y, Louradour J, Lamblin P. Exploring
               manufacturing technologies of composite components and   strategies for training deep neural networks. J Mach Learn
               their cost-effectiveness in the automotive industry: A review   Res. 2009;10(1):1-40.
               study. Compos Struct. 2021;266:113864.
                                                               29.  Hong H, Sarfraz MS, Jeong M, et al. Prediction of ground
               doi: 10.1016/j.compstruct.2021.113864
                                                                  reaction forces using the artificial neural network from
            17.  Mrazova M. Advanced composite materials of the future in   capacitive self-sensing values of composite ankle springs for
               aerospace industry. Incas Bull. 2013;5(3):139-50.  exo-robots. Compos Struct. 2022;301:116233.
            18.  Galos J, Pattarakunnan K, Best AS, Kyratzis IL, Wang CH,      doi: 10.1016/j.compstruct.2022.116233


            Volume 2 Issue 3 (2025)                         24                        doi: 10.36922/IJAMD025210016
   25   26   27   28   29   30   31   32   33   34   35