Page 32 - IJAMD-2-3
P. 32

International Journal of AI for
            Materials and Design                                                   AI applications in composite materials



               neural networks. Compos Struct. 2019;227:111264.     doi: 10.1016/j.compositesb.2024.111751
               doi: 10.1016/j.compstruct.2019.111264           64.  Liu C, Li X, Ge J, et al. A deep learning framework based
                                                                  on attention mechanism for predicting the mechanical
            53.  Shorten C, Khoshgoftaar TM. A  survey on image data
               augmentation for deep learning. J Big Data. 2019;6(1):60.  properties and failure mode of embedded wrinkle fiber-
                                                                  reinforced composites.  Compos Part  A Appl Sci Manuf.
               doi: 10.1186/s40537-019-0197-0                     2024;186:108401.
            54.  Mikołajczyk A, Grochowski M.  Data Augmentation for      doi: 10.1016/j.compositesa.2024.108401
               Improving Deep Learning in Image Classification Problem.
               New York: IEEE; 2018. p. 117-122.               65.  Yousefi E, Shiri MB, Rezaei MA, Rezaei S, Band SS,
                                                                  Mosavi  A.  A  novel  long-term  water  absorption  and
            55.  Shim YB, Lee IY, Park YB. Predicting the material   thickness swelling deep learning forecast method for corn
               behavior of recycled composites: Experimental analysis   husk fiber-polypropylene composite.  Case Stud Construct
               and deep learning hybrid approach.  Compos Sci Technol.   Mater. 2022;17:e01268.
               2024;249:110464.
                                                                  doi: 10.1016/j.cscm.2022.e01268
               doi: 10.1016/j.compscitech.2024.110464
                                                               66.  Gao H, Zhai Y, Wang T. A deep LSTM-based constitutive
            56.  Zhu X, Liu Y, Li J, Wan T, Qin Z. Emotion Classification with   model for describing the impact characteristics of concrete-
               Data Augmentation using Generative Adversarial Networks.   granite composites with different roughness interfaces. Sci
               Berlin: Springer; 2018. p. 349-360.                Rep. 2024;14(1):29129.
            57.  Lata K, Dave M, Nishanth KN. Data Augmentation      doi: 10.1038/s41598-024-80366-6
               using Generative Adversarial Network. In:  Proceedings of
               2   International Conference on Advanced Computing and   67.  Cheung  HL,  Mirkhalaf  M. A  multi-fidelity  data-driven
                nd
               Software Engineering (ICACSE); 2019.               model for highly accurate and computationally efficient
                                                                  modeling of short fiber composites.  Compos Sci Technol.
            58.  Shao S, Wang P, Yan R. Generative adversarial networks for   2024;246:110359.
               data augmentation in machine fault diagnosis. Comput Ind.
               2019;106:85-93.                                    doi: 10.1016/j.compscitech.2023.110359
               doi: 10.1016/j.compind.2019.01.001              68.  El Said B. Predicting the non-linear response of composite
                                                                  materials using deep recurrent convolutional neural
            59.  Liu C, Xu X, Wu J, Zhu H, Wang C. Deep transfer learning-  networks. Int J Solids Struct. 2023;276:112334.
               based damage detection of composite structures by fusing
               monitoring data with physical mechanism. Eng Appl Artif      doi: 10.1016/j.ijsolstr.2023.112334
               Intell. 2023;123:106245.                        69.  Maia M, Rocha IB, Kovačević D, Van der Meer F. Physically
               doi: 10.1016/j.engappai.2023.106245                recurrent neural network for  rate  and path-dependent
                                                                  heterogeneous materials in a finite strain framework. Mech
            60.  Xu Y, Weng H, Ju X,  et al.  A  method for predicting   Mater. 2024;198:105145.
               mechanical properties of composite microstructure with
               reduced dataset based on transfer learning. Compos Struct.      doi: 10.1016/j.mechmat.2024.105145
               2021;275:114444.                                70.  Chen Q, Jia R, Pang S. Deep long short-term memory
               doi: 10.1016/j.compstruct.2021.114444              neural network for accelerated elastoplastic analysis
                                                                  of heterogeneous materials: An integrated data-driven
            61.  Yi J,  Deng B,  Peng F,  et  al. Study  on the parameters   surrogate approach. Compos Struct. 2021;264:113688.
               optimization of 3D printing continuous carbon fiber-
               reinforced composites based on CNN and NSGA-II. Compos      doi: 10.1016/j.compstruct.2021.113688
               Part A Appl Sci Manuf. 2025;190:108657.         71.  Borkowski L, Skinner T, Chattopadhyay A. Woven ceramic
               doi: 10.1016/j.compositesa.2024.108657             matrix composite surrogate model based on physics-
                                                                  informed recurrent neural network.  Compos Struct.
            62.  Yu  C,  Zheng  S, Zhao  X.  A  novel  version  of  hierarchical
               genetic algorithm and its application for hyperparameters   2023;305:116455.
               optimization in  CNN models for  structural delamination      doi: 10.1016/j.compstruct.2022.116455
               identification. J Braz Soc Mech Sci Eng. 2024;46(8):462.  72.  Arnold SM, Mital SK, Hearley BL. Stiffness and Fatigue Life
               doi: 10.21203/rs.3.rs-3620270/v1                   Estimator for Polymer Composite Laminates Using Machine
                                                                  Learning. Ohio: Glenn Research Center; 2023.
            63.  DeMille KJ, Hall R, Leigh JR, Guven I, Spear AD. Materials
               design using genetic algorithms informed by convolutional   73.  Sun X, Yue L, Yu L,  et al. Machine learning-evolutionary
               neural networks: Application to carbon nanotube bundles.   algorithm enabled design for 4D-printed active composite
               Compos Part B Eng. 2024;286:111751.                structures. Adv Funct Mater. 2022;32(10):2109805.


            Volume 2 Issue 3 (2025)                         26                        doi: 10.36922/IJAMD025210016
   27   28   29   30   31   32   33   34   35   36   37