Page 35 - IJAMD-2-3
P. 35
International Journal of AI for
Materials and Design AI applications in composite materials
. infrared thermography. Compos Struct. 2022;290:115543.
116. Wang W, Cheney W, Amirkhizi AV. Generative design doi: 10.1016/j.compstruct.2022.115543
of graded metamaterial arrays for dynamic response 127. Yang L, Zhang Z, Song Y, et al. Diffusion models:
modulation. Mater Design. 2024;237:112550.
A comprehensive survey of methods and applications. ACM
doi: 10.1016/j.matdes.2023.112550 Comput Surv. 2023;56(4):1-39.
117. Sun H, Wang X, Li J, Li Z, Guan Z. Efficient property- doi: 10.1145/3626235
oriented design of composite layups via controllable 128. Lyu X, Ren X. Microstructure reconstruction of 2D/3D
latent features using generative VAE. Compos Sci Technol. random materials via diffusion-based deep generative
2025;259:110936.
models. Sci Rep. 2024;14(1):5041.
doi: 10.1016/j.compscitech.2024.110936
doi: 10.1038/s41598-024-54861-9
118. Zhang C, Liu X, Wei D, Bo L. Predicting damage and 129. Lee KH, Yun GJ. Microstructure reconstruction using
quantifying uncertainty in composite plates with diffusion-based generative models. Mech Adv Mater Struct.
semi-supervised VAE-BNN model. Measurement. 2024;31(18):4443-4461.
2024;236:115069.
doi: 10.1080/15376494.2023.2198528
doi: 10.1016/j.measurement.2024.115069
130. Bastek JH, Kochmann DM. Inverse design of nonlinear
119. Wang G, Zhang L, Xuan S, et al. An efficient surrogate model mechanical metamaterials via video denoising diffusion
for damage forecasting of composite laminates based on
deep learning. Compos Struct. 2024;331:117863. models. Nat Mach Intell. 2023;5(12):1466-1475.
doi: 10.1038/s42256-023-00762-x
doi: 10.1016/j.compstruct.2023.117863
131. Huang T, Gao Y, Li Z, Hu Y, Xuan F. A hybrid deep learning
120. Jiang D, Qian H, Wang Y, Zheng J, Zhang D, Li Q. Data framework based on diffusion model and deep residual
driven prediction of fatigue residual stiffness of braided neural network for defect detection in composite plates.
ceramic matrix composites based on Latent-ODE. Compos Appl Sci. 2023;13(10):5843.
Struct. 2023;323:117504.
132. Kobyzev I, Prince SJ, Brubaker MA. Normalizing flows: An
doi: 10.1016/j.compstruct.2023.117504
introduction and review of current methods. IEEE Trans
121. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative Pattern Anal Mach Intell. 2020;43(11):3964-3979.
Adversarial Nets. In: Advances in Neural Information
Processing Systems. Vol. 27; 2014 [arXiv Preprint]. doi: 10.1109/TPAMI.2020.2992934
133. Mirzaee H, Kamrava S. Inverse design of microstructures
122. Yang Z, Yu CH, Buehler MJ. Deep learning model to predict using conditional continuous normalizing flows. Acta
complex stress and strain fields in hierarchical composites. Mater. 2025;285:120704.
Sci Adv. 2021;7(15):eabd7416.
doi: 10.1016/j.actamat.2024.120704
doi: 10.1126/sciadv.abd7416
134. Zhang C, Lu J, Zhao Y. Generative pre-trained transformers
123. Guo R, Alves M, Mehdikhani M, Breite C, Swolfs Y.
Synthesising realistic 2D microstructures of unidirectional (GPT)-based automated data mining for building energy
fibre-reinforced composites with a generative adversarial management: Advantages, limitations and the future. Energy
network. Compos Sci Technol. 2024;250:110539. Built Environ. 2024;5(1):143-169.
doi: 10.1016/j.enbenv.2023.06.005
doi: 10.1016/j.compscitech.2024.110539
135. Shah B, Sinha A, Saxena P. Image GPT with Super Resolution.
124. Wang Y, Sun J, Wang X, et al. Multi-objective optimization Berlin: Springer; 2022. p. 99-107.
of engineered cementitious composite based on machine
learning and generative adversarial network. J Build Eng. 136. Hatamizadeh A, Song J, Liu G, Kautz J, Vahdat A. Diffit:
2024;96:110471. Diffusion Vision Transformers for Image Generation. Berlin:
Springer; 2024. p. 37-55.
doi: 10.1016/j.jobe.2024.110471
137. Generale AP, Robertson AE, Kelly C, Kalidindi SR.
125. Li M, Jia G, Cheng Z, Shi Z. Generative adversarial network
guided topology optimization of periodic structures via Inverse stochastic microstructure design. Acta Mater.
Subset Simulation. Compos Struct. 2021;260:113254. 2024;271:119877.
doi: 10.2139/ssrn.4590691
doi: 10.1016/j.compstruct.2020.113254
138. Murphy RR. Introduction to AI Robotics. Cambridge: MIT
126. Cheng L, Tong Z, Xie S, Kersemans M. IRT-GAN:
A generative adversarial network with a multi-headed fusion Press; 2019.
strategy for automated defect detection in composites using 139. Yurtsever E, Lambert J, Carballo A, Takeda K. A survey
Volume 2 Issue 3 (2025) 29 doi: 10.36922/IJAMD025210016

