Page 31 - IJAMD-2-3
P. 31

International Journal of AI for
            Materials and Design                                                   AI applications in composite materials



            30.  Wang W, Wang H, Zhou J, Fan H, Liu X. Machine   42.  Rawat W, Wang Z. Deep convolutional neural networks
               learning prediction of mechanical properties of braided-  for image classification: A  comprehensive review.  Neural
               textile reinforced tubular  structures.  Mater Design.   Comput. 2017;29(9):2352-2449.
               2021;212:110181.
                                                                  doi: 10.1162/NECO_a_00990
               doi: 10.1016/j.matdes.2021.110181
                                                               43.  Dhillon A, Verma GK. Convolutional neural network:
            31.  Ding X, Gu Z, Hou X, Xia M, Ismail Y, Ye J. Effects of defects   A  review of models, methodologies and applications to
               on the transverse mechanical response of unidirectional   object detection. Prog Artif Intell. 2020;9(2):85-112.
               fibre-reinforced polymers: DEM simulation and deep      doi: 10.1007/s13748-019-00190-9
               learning prediction. Compos Struct. 2023;321:117301.
                                                               44.  Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition:
               doi: 10.1016/j.compstruct.2023.117301
                                                                  A  convolutional neural-network approach.  IEEE Trans
            32.  Hong  H,  Kim  W,  Kim  S,  Lee  K,  Kim  SS.  Deep  transfer   Neural Netw. 1997;8(1):98-113.
               learning for efficient and accurate prediction of composite      doi: 10.1109/72.554195
               pressure vessel behaviors. Compos Part A Appl Sci Manuf.
               2024;186:108413.                                45.  Hong H, Kim W, Lee K, Kim SS. Prediction of stacking
                                                                  angles of fiber-reinforced composite materials using deep
               doi: 10.1016/j.compositesa.2024.108413             learning based on convolutional neural networks. Compos
            33.  Zhang Z, Zhou H, Ma J,  et al. Space deployable bistable   Res. 2023;36(1):48-52.
               composite structures with C-cross section based on machine   46.  Caglar B, Broggi G, Ali MA, Orgéas L, Michaud V. Deep
               learning and multi-objective optimization. Compos Struct.   learning accelerated prediction of the permeability of
               2022;297:115983.                                   fibrous microstructures.  Compos Part  A Appl Sci Manuf.
               doi: 10.1016/j.compstruct.2022.115983              2022;158:106973.
            34.  Tao F, Liu X, Du H, Yu W. Learning composite constitutive      doi: 10.1016/j.compositesa.2022.106973
               laws via coupling Abaqus and deep neural network. Compos   47.  Kojima Y, Hirayama K, Endo K, Harada Y, Muramatsu M.
               Struct. 2021;272:114137.                           Transfer-learning-aided defect prediction in simply shaped
               doi: 10.1016/j.compstruct.2021.114137              CFRP specimens based on stress distribution obtained from
                                                                  finite element analysis and infrared stress measurement.
            35.  Schmidt T, Natarajan DK, Duhovic M, Cassola S, Nuske M,   Compos Part B Eng. 2025;291:111958.
               May D. Numerical data generation for building machine
               learning models for permeability estimation of fibrous      doi: 10.1016/j.compositesb.2024.111958
               structures. Polym Compos. 2025:1-17.            48.  Guild F, Summerscales J. Microstructural image analysis
               doi: 10.1002/pc.29768                              applied to fibre composite materials: A review. Composites.
                                                                  1993;24(5):383-393.
            36.  Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A Survey on
               Deep Transfer Learning. Berlin: Springer; 2018. p. 270-279.     doi: 10.1016/0010-4361(93)90246-5
            37.  Long M, Zhu H, Wang J, Jordan MI. Deep Transfer Learning   49.  D’orazio T, Leo M, Distante A, Guaragnella C, Pianese V,
               with Joint Adaptation Networks. In: Proceedings of Machine   Cavaccini G. Automatic ultrasonic inspection for internal
               Learning Research; 2017. p. 2208-2217.             defect detection in composite materials.  NDT E Int.
                                                                  2008;41(2):145-154.
            38.  Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on
               transfer learning. Proceed IEEE. 2020;109(1):43-76.     doi: 10.1016/j.ndteint.2007.08.001
               doi: 10.1109/JPROC.2019.2955636                 50.  Bhaduri A, Gupta A, Graham-Brady L. Stress field prediction
                                                                  in fiber-reinforced composite materials using a deep learning
            39.  O’shea K, Nash R. An Introduction to Convolutional Neural   approach. Compos Part B Eng. 2022;238:109879.
               Networks. [arXiv Preprint]; 2015.
                                                                  doi: 10.1016/j.compositesb.2022.109879
               doi: 10.48550/arXiv.1511.08458
                                                               51.  Kim DW, Lim JH, Lee S. Prediction and validation of the
            40.  Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional   transverse mechanical behavior of unidirectional composites
               neural networks: An overview and application in radiology.   considering interfacial debonding through convolutional
               Insights Imaging. 2018;9:611-629.
                                                                  neural networks. Compos Part B Eng. 2021;225:109314.
               doi: 10.1007/s13244-018-0639-9
                                                                  doi: 10.1016/j.compstruct.2020.109314
            41.  Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional   52.  Abueidda  DW,  Almasri  M,  Ammourah  R,  Ravaioli  U,
               neural networks. Pattern Recognit. 2018;77:354-377.
                                                                  Jasiuk  IM, Sobh NA. Prediction and optimization of
               doi: 10.1016/j.patcog.2017.10.013                  mechanical properties of composites using convolutional


            Volume 2 Issue 3 (2025)                         25                        doi: 10.36922/IJAMD025210016
   26   27   28   29   30   31   32   33   34   35   36