Page 36 - IJAMD-2-3
P. 36
International Journal of AI for
Materials and Design AI applications in composite materials
of autonomous driving: Common practices and emerging doi: 10.1016/j.compstruct.2024.118272
technologies. IEEE Access. 2020;8:58443-58469.
145. Fotouhi S, Pashmforoush F, Bodaghi M, Fotouhi M.
140. Arinez JF, Chang Q, Gao RX, Xu C, Zhang J. Artificial Autonomous damage recognition in visual inspection
intelligence in advanced manufacturing: Current status and of laminated composite structures using deep learning.
future outlook. J Manuf Sci Eng. 2020;142(11):110804. Compos Struct. 2021;268:113960.
doi: 10.1115/1.4047855 doi: 10.1016/j.compstruct.2021.113960
141. Tang C, Sun D, Zou J, Xiong Y, Fang G, Zhang W. Lay‐up 146. Szarski M, Chauhan S. Composite temperature profile and
defects inspection for automated fiber placement with tooling optimization via Deep Reinforcement Learning.
structural light scanning and deep learning. Polym Compos. Compos Part A Appl Sci Manuf. 2021;142:106235.
2025:1-11.
147. Zemzemoglu M, Unel M, Tunc LT. Enhancing automated
doi: 10.1002/pc.29672 fiber placement process monitoring and quality inspection:
A hybrid thermal vision based framework. Compos Part B
142. Wang Y, Xu S, Bwar K, et al. Application of machine learning
for composite moulding process modelling. Compos Eng. 2024;285:111753.
Commun. 2024;48:101960. doi: 10.1016/j.compositesa.2020.106235
doi: 10.1016/j.coco.2024.101960 148. Schoenholz C, Zobeiry N. An accelerated process
optimization method to minimize deformations in
143. Machado JM, Tavares JMR, Camanho PP, Correia N.
Automatic void content assessment of composite laminates composites using theory-guided probabilistic machine
using a machine-learning approach. Compos Struct. learning. Compos Part A Appl Sci Manuf. 2024;176:107842.
2022;288:115383. doi: 10.1016/j.compositesa.2023.107842
doi: 10.1016/j.compstruct.2022.115383 149. Humfeld KD, Kim GY, Jeon JH, et al. Co-training of multiple
neural networks for simultaneous optimization and training
144. Liu Q, Wang Q, Guo J, et al. A Transformer-based neural
network for automatic delamination characterization of of physics-informed neural networks for composite curing.
quartz fiber-reinforced polymer curved structure using Compos Part A Appl Sci Manuf. 2025;193:108820.
improved THz-TDS. Compos Struct. 2024;343:118272. doi: 10.1016/j.compositesa.2025.108820
Volume 2 Issue 3 (2025) 30 doi: 10.36922/IJAMD025210016

