Page 36 - IJAMD-2-3
P. 36

International Journal of AI for
            Materials and Design                                                   AI applications in composite materials



               of autonomous driving: Common practices and emerging      doi: 10.1016/j.compstruct.2024.118272
               technologies. IEEE Access. 2020;8:58443-58469.
                                                               145. Fotouhi S, Pashmforoush F, Bodaghi M, Fotouhi M.
            140. Arinez JF, Chang Q, Gao RX, Xu C, Zhang J. Artificial   Autonomous damage recognition in visual inspection
               intelligence in advanced manufacturing: Current status and   of laminated composite structures using deep learning.
               future outlook. J Manuf Sci Eng. 2020;142(11):110804.  Compos Struct. 2021;268:113960.
               doi: 10.1115/1.4047855                             doi: 10.1016/j.compstruct.2021.113960
            141. Tang C, Sun D, Zou J, Xiong Y, Fang G, Zhang W. Lay‐up   146. Szarski M, Chauhan S. Composite temperature profile and
               defects inspection for automated fiber placement with   tooling optimization via Deep Reinforcement Learning.
               structural light scanning and deep learning. Polym Compos.   Compos Part A Appl Sci Manuf. 2021;142:106235.
               2025:1-11.
                                                               147. Zemzemoglu M, Unel M, Tunc LT. Enhancing automated
               doi: 10.1002/pc.29672                              fiber placement process monitoring and quality inspection:
                                                                  A hybrid thermal vision based framework. Compos Part B
            142. Wang Y, Xu S, Bwar K, et al. Application of machine learning
               for composite moulding process modelling.  Compos   Eng. 2024;285:111753.
               Commun. 2024;48:101960.                            doi: 10.1016/j.compositesa.2020.106235
               doi: 10.1016/j.coco.2024.101960                 148. Schoenholz C, Zobeiry N. An accelerated process
                                                                  optimization method to minimize deformations in
            143. Machado  JM,  Tavares  JMR,  Camanho  PP,  Correia  N.
               Automatic void content assessment of composite laminates   composites using theory-guided probabilistic machine
               using a machine-learning approach.  Compos Struct.   learning. Compos Part A Appl Sci Manuf. 2024;176:107842.
               2022;288:115383.                                   doi: 10.1016/j.compositesa.2023.107842
               doi: 10.1016/j.compstruct.2022.115383           149. Humfeld KD, Kim GY, Jeon JH, et al. Co-training of multiple
                                                                  neural networks for simultaneous optimization and training
            144. Liu Q, Wang Q, Guo J, et al. A Transformer-based neural
               network for automatic delamination characterization of   of physics-informed neural networks for composite curing.
               quartz fiber-reinforced polymer curved structure using   Compos Part A Appl Sci Manuf. 2025;193:108820.
               improved THz-TDS. Compos Struct. 2024;343:118272.     doi: 10.1016/j.compositesa.2025.108820










































            Volume 2 Issue 3 (2025)                         30                        doi: 10.36922/IJAMD025210016
   31   32   33   34   35   36   37   38   39   40   41