Page 33 - IJAMD-2-3
P. 33
International Journal of AI for
Materials and Design AI applications in composite materials
doi: 10.1002/adfm.202109805 84. Truong VH, Le QH, Lee J, Han JW, Tessler A, Nguyen SN.
An efficient neural network approach for laminated
74. Friemann J, Dashtbozorg B, Fagerström M, Mirkhalaf SM.
A micromechanics‐based recurrent neural networks model for composite plates using refined zigzag theory. Compos Struct.
path‐dependent cyclic deformation of short fiber composites. 2024;348:118476.
Int J Numer Methods Eng. 2023;124(10):2292-2314. doi: 10.1016/j.compstruct.2024.118476
doi: 10.1002/nme.7211 85. Du J, Zeng J, Wang H, Ding H, Wang H, Bi Y. Using acoustic
emission technique for structural health monitoring of
75. Qiu C, Gui Y, Ma J, Song H, Yang J. Machine learning-based laminate composite: A novel CNN-LSTM framework. Eng
determination of Mode II translaminar fracture toughness Fract Mech. 2024;309:110447.
of composite laminates from simple V-notched shear tests.
Compos Part A Appl Sci Manuf. 2024;184:108233. doi: 10.1016/j.engfracmech.2024.110447
doi: 10.1016/j.compositesa.2024.108233 86. Kovács N, Maia M, Rocha IB, Furtado C, Camanho PP, Van
der Meer FP. Physically Recurrent Neural Networks for
76. Parida SP, Sahoo S, Jena PC. Prediction of multiple computational homogenization of composite materials with
transverse cracks in a composite beam using hybrid RNN- microscale debonding. Eur J Mech A Solids. 2025;112:105668.
mPSO technique. Proc Inst Mech Engi Part C J Mech Eng Sci.
2024;238(16):7977-7986. doi: 10.48550/arXiv.2410.13774
doi: 10.1177/09544062241239415 87. Cuomo S, Di Cola VS, Giampaolo F, Rozza G, Raissi M,
Piccialli F. Scientific machine learning through physics-
77. Zhang F, Wang L, Ye W, Li Y, Yang F. Ultrasonic lamination informed neural networks: Where we are and what’s next.
defects detection of carbon fiber composite plates based on J Sci Comput. 2022;92(3):88.
multilevel LSTM. Compos Struct. 2024;327:117714.
88. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed
78. Kadri K, Kallel A, Guerard G, et al. Prediction of ductile neural networks: A deep learning framework for solving
damage in composite material used in type IV hydrogen forward and inverse problems involving nonlinear partial
tanks by artificial neural network and machine learning differential equations. J Comput Phys. 2019;378:686-707.
with finite element modeling approach. Energy Technol.
2025;13(1):2401045. doi: 10.1016/j.jcp.2018.10.045
doi: 10.1002/ente.202401045 89. Lee J, Duhovic M, May D, Allen T, Kelly P. Physics-
informed neural networks for real-time simulation of
79. Ghane E, Fagerström M, Mirkhalaf M. Recurrent Neural transverse liquid composite moulding processes and
Networks and Transfer Learning for Elasto-Plasticity in permeability measurements. Compos Part A Appl Sci Manuf.
Woven Composites. [arXiv Preprint]; 2023. 2025;193:108857.
80. Jian Y, Hu P, Zhou Q, et al. A novel bidirectional LSTM doi: 10.1016/j.compositesa.2025.108857
network model for very high cycle random fatigue
performance of CFRP composite thin plates. Int J Fatigue. 90. Kalimullah NM, Shelke A, Habib A. A probabilistic
2025;190:108627. framework for source localization in anisotropic composite
using transfer learning based multi-fidelity physics informed
doi: 10.1016/j.ijfatigue.2024.108627 neural network (mfPINN). Mech Syst Signal Process.
81. Ghane E, Fagerström M, Mirkhalaf M. Multi-fidelity data 2023;197:110360.
fusion for inelastic woven composites: Combining recurrent doi: 10.1016/j.ymssp.2023.110360
neural networks with transfer learning. Compos Sci Technol.
2025;267:111163. 91. Würth T, Krauß C, Zimmerling C, Kärger L. Physics-
informed neural networks for data-free surrogate modelling
doi: 10.1016/j.compscitech.2025.111163 and engineering optimization-an example from composite
82. Bahmanpour M, Kalhori H, Li B. A data-driven hybrid manufacturing. Mater Design. 2023;231:112034.
recurrent neural network and model-based framework for doi: 10.1016/j.matdes.2023.112034
accurate impact force estimation. Mech Syst Signal Process. 92. Wang X, Kan Q, Petru M, Kang G. Study on the composition-
2025;229:112503.
property relationships of basalt fibers based on symbolic
doi: 10.1016/j.ymssp.2025.112503 regression and physics-informed neural network. Compos
Part A Appl Sci Manuf. 2024;185:108324.
83. Shang T, Ge J, Yang J, Li M, Liang J. Spatiotemporal prediction
of surface roughness evolution of C/C composites based on doi: 10.1016/j.compositesa.2024.108324
recurrent neural network. Compos Part A Appl Sci Manuf. 93. Meng Q, Li Y, Liu X, Chen G, Hao X. A novel physics-
2024;186:108429.
informed neural operator for thermochemical curing
doi: 10.1016/j.compositesa.2024.108429 analysis of carbon-fibre-reinforced thermosetting
Volume 2 Issue 3 (2025) 27 doi: 10.36922/IJAMD025210016

