Page 33 - IJAMD-2-3
P. 33

International Journal of AI for
            Materials and Design                                                   AI applications in composite materials



               doi: 10.1002/adfm.202109805                     84.  Truong VH, Le QH, Lee J, Han JW, Tessler A, Nguyen SN.
                                                                  An efficient neural network approach for laminated
            74.  Friemann J, Dashtbozorg B, Fagerström M, Mirkhalaf  SM.
               A micromechanics‐based recurrent neural networks model for   composite plates using refined zigzag theory. Compos Struct.
               path‐dependent cyclic deformation of short fiber composites.   2024;348:118476.
               Int J Numer Methods Eng. 2023;124(10):2292-2314.     doi: 10.1016/j.compstruct.2024.118476
               doi: 10.1002/nme.7211                           85.  Du J, Zeng J, Wang H, Ding H, Wang H, Bi Y. Using acoustic
                                                                  emission technique for structural health monitoring of
            75.  Qiu C, Gui Y, Ma J, Song H, Yang J. Machine learning-based   laminate composite: A novel CNN-LSTM framework. Eng
               determination of Mode II translaminar fracture toughness   Fract Mech. 2024;309:110447.
               of composite laminates from simple V-notched shear tests.
               Compos Part A Appl Sci Manuf. 2024;184:108233.     doi: 10.1016/j.engfracmech.2024.110447
               doi: 10.1016/j.compositesa.2024.108233          86.  Kovács N, Maia M, Rocha IB, Furtado C, Camanho PP, Van
                                                                  der Meer FP. Physically Recurrent Neural Networks for
            76.  Parida SP, Sahoo S, Jena PC. Prediction of multiple   computational homogenization of composite materials with
               transverse cracks in a composite beam using hybrid RNN-  microscale debonding. Eur J Mech A Solids. 2025;112:105668.
               mPSO technique. Proc Inst Mech Engi Part C J Mech Eng Sci.
               2024;238(16):7977-7986.                            doi: 10.48550/arXiv.2410.13774
               doi: 10.1177/09544062241239415                  87.  Cuomo S, Di Cola VS, Giampaolo F, Rozza G, Raissi M,
                                                                  Piccialli F. Scientific machine learning through physics-
            77.  Zhang F, Wang L, Ye W, Li Y, Yang F. Ultrasonic lamination   informed neural networks: Where we are and what’s next.
               defects detection of carbon fiber composite plates based on   J Sci Comput. 2022;92(3):88.
               multilevel LSTM. Compos Struct. 2024;327:117714.
                                                               88.  Raissi M, Perdikaris P, Karniadakis GE. Physics-informed
            78.  Kadri K, Kallel A, Guerard G, et al. Prediction of ductile   neural  networks:  A  deep  learning  framework  for  solving
               damage in composite material used in type  IV hydrogen   forward and inverse problems involving nonlinear partial
               tanks by artificial neural network and machine learning   differential equations. J Comput Phys. 2019;378:686-707.
               with finite element modeling approach.  Energy  Technol.
               2025;13(1):2401045.                                doi: 10.1016/j.jcp.2018.10.045
               doi: 10.1002/ente.202401045                     89.  Lee J, Duhovic M, May D, Allen T, Kelly P. Physics-
                                                                  informed neural networks for real-time simulation of
            79.  Ghane E, Fagerström M, Mirkhalaf M.  Recurrent  Neural   transverse liquid composite moulding processes and
               Networks and Transfer Learning for Elasto-Plasticity in   permeability measurements. Compos Part A Appl Sci Manuf.
               Woven Composites. [arXiv Preprint]; 2023.          2025;193:108857.
            80.  Jian Y, Hu P, Zhou Q,  et  al. A  novel bidirectional LSTM      doi: 10.1016/j.compositesa.2025.108857
               network model for very high cycle random fatigue
               performance of CFRP composite thin plates. Int J Fatigue.   90.  Kalimullah NM, Shelke A, Habib A. A  probabilistic
               2025;190:108627.                                   framework for source localization in anisotropic composite
                                                                  using transfer learning based multi-fidelity physics informed
               doi: 10.1016/j.ijfatigue.2024.108627               neural network (mfPINN).  Mech  Syst  Signal  Process.
            81.  Ghane E, Fagerström M, Mirkhalaf M. Multi-fidelity data   2023;197:110360.
               fusion for inelastic woven composites: Combining recurrent      doi: 10.1016/j.ymssp.2023.110360
               neural networks with transfer learning. Compos Sci Technol.
               2025;267:111163.                                91.  Würth T, Krauß C, Zimmerling C, Kärger L. Physics-
                                                                  informed neural networks for data-free surrogate modelling
               doi: 10.1016/j.compscitech.2025.111163             and engineering optimization-an example from composite
            82.  Bahmanpour M, Kalhori H, Li B. A  data-driven hybrid   manufacturing. Mater Design. 2023;231:112034.
               recurrent neural network and model-based framework for      doi: 10.1016/j.matdes.2023.112034
               accurate impact force estimation. Mech Syst Signal Process.   92.  Wang X, Kan Q, Petru M, Kang G. Study on the composition-
               2025;229:112503.
                                                                  property  relationships  of  basalt  fibers  based  on  symbolic
               doi: 10.1016/j.ymssp.2025.112503                   regression and physics-informed neural network.  Compos
                                                                  Part A Appl Sci Manuf. 2024;185:108324.
            83.  Shang T, Ge J, Yang J, Li M, Liang J. Spatiotemporal prediction
               of surface roughness evolution of C/C composites based on      doi: 10.1016/j.compositesa.2024.108324
               recurrent neural network. Compos Part A Appl Sci Manuf.   93.  Meng  Q,  Li  Y,  Liu  X, Chen  G, Hao  X.  A  novel  physics-
               2024;186:108429.
                                                                  informed neural operator for thermochemical curing
               doi: 10.1016/j.compositesa.2024.108429             analysis  of  carbon-fibre-reinforced  thermosetting


            Volume 2 Issue 3 (2025)                         27                        doi: 10.36922/IJAMD025210016
   28   29   30   31   32   33   34   35   36   37   38