Page 114 - IJB-10-1
P. 114

International Journal of Bioprinting                                3D bioprinting for musculoskeletal system




            197. Greenblatt MB, Tsai JN, Wein MN. Bone turnover markers   204. Datta  P,  Wu  Y,  Yu  Y,  Moncal  KK,  Ozbolat IT. A  scaffold
               in the diagnosis and monitoring of metabolic bone disease.   free 3D bioprinted cartilage model for in vitro toxicology.
               Clin Chem. 2017;63:464-474.                        Methods Mol Biol. 2021;2147:175-183.
               doi: 10.1373/clinchem.2016.259085                  doi: 10.1007/978-1-0716-0611-7_15
            198. Breathwaite E, Weaver J, Odanga J, dela Pena-Ponce M, Lee   205. Ouyang L. Pushing the rheological and mechanical
               JB. 3D bioprinted osteogenic tissue models for in vitro drug   boundaries of extrusion-based 3D bioprinting.  Trends
               screening. Molecules. 2020;25:3442.                Biotechnol. 2022;40:891-902.
               doi: 10.3390/molecules25153442                     doi: 10.1016/j.tibtech.2022.01.001
            199. Breathwaite EK, Weaver JR, Murchison AC, Treadwell ML,   206. Ouyang L, Armstrong JPK, Lin Y,  et al. Expanding and
               Odanga JJ, Lee JB. Scaffold-free bioprinted osteogenic and   optimizing 3D bioprinting capabilities using complementary
               chondrogenic systems to model osteochondral physiology.   network bioinks. Sci Adv. 2020;6:eabc5529.
               Biomed Mater. 2019;14:065010.                      doi: 10.1126/sciadv.abc5529
               doi: 10.1088/1748-605X/ab4243
                                                               207.  Chimene D, Peak CW, Gentry JL, et al. Nanoengineered ionic–
            200. Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis.   covalent entanglement (nice) bioinks for 3D bioprinting. ACS
               Nat Rev Dis Primers. 2016;2:16072.
               doi: 10.1038/nrdp.2016.72                          Appl Mater Interfaces. 2018;10:9957-9968.
                                                                  doi: 10.1021/acsami.7b19808
            201.  Singh YP, Moses JC, Bandyopadhyay A,  Mandal BB. 3D
               bioprinted silk-based in vitro osteochondral model for   208. Dubey N, Ferreira JA, Daghrery A,  et al. Highly tunable
               osteoarthritis therapeutics. Adv Healthc Mater. 2022;11:2200209.  bioactive fiber-reinforced hydrogel for guided bone
               doi: 10.1002/adhm.202200209                        regeneration. Acta Biomater. 2020;113:164-176.
                                                                  doi: 10.1016/j.actbio.2020.06.011
            202. Furrer  R, Handschin C. Muscle wasting diseases: Novel
               targets and treatments.  Annu Rev Pharmacol Toxicol.   209. Shao L, Gao Q, Xie C, Fu J, Xiang M, He Y. Synchronous 3D
               2019;59:315-339.                                   bioprinting of large-scale cell-laden constructs with nutrient
               doi: 10.1146/annurev-pharmtox-010818-021041        networks. Adv Healthc Mater. 2020;9:e1901142.
                                                                  doi: 10.1002/adhm.201901142
            203. Alave Reyes-Furrer A, De Andrade S, Bachmann D,  et
               al. Matrigel 3D bioprinting of  contractile  human skeletal   210. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP.
               muscle models recapitulating exercise and pharmacological   Recapitulating macro-scale tissue self-organization through
               responses. Commun Biol. 2021;4:1183.               organoid bioprinting. Nat Mater. 2021;20:22-29.
               doi: 10.1038/s42003-021-02691-0                    doi: 10.1038/s41563-020-00803-5





































            Volume 10 Issue 1 (2024)                       106                          https://doi.org/10.36922/ijb.1037
   109   110   111   112   113   114   115   116   117   118   119