Page 110 - IJB-10-1
P. 110
International Journal of Bioprinting 3D bioprinting for musculoskeletal system
100. Lee AK, Lin YH, Tsai CH, Chang W-T, Lin T-L, Shie M-Y. 112. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting
Digital light processing bioprinted human chondrocyte- of hydrogel constructs with cell and material gradients for
laden poly (γ-glutamic acid)/hyaluronic acid bio-ink towards the regeneration of full-thickness chondral defect using a
cartilage tissue engineering. Biomedicines. 2021;9:714. microfluidic printing head. Biofabrication. 2019;11:044101.
doi: 10.3390/biomedicines9070714 doi: 10.1088/1758-5090/ab2622
101. Lipskas J, Deep K, Yao W. Robotic-assisted 3D bio-printing 113. Wu Y, Ayan B, Moncal KK, et al. Hybrid bioprinting of
for repairing bone and cartilage defects through a minimally zonally stratified human articular cartilage using scaffold-
invasive approach. Sci Rep. 2019;9:3746. free tissue strands as building blocks. Adv Healthc Mater.
doi: 10.1038/s41598-019-38972-2 2020;9:e2001657.
doi: 10.1002/adhm.202001657
102. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted
in situ 3D printing in cartilage regeneration with HAMA 114. Dai W, Zhang L, Yu Y, et al. 3D bioprinting of heterogeneous
hydrogel: An in vivo study. J Adv Res. 2020;23:123-132. constructs providing tissue-specific microenvironment
doi: 10.1016/j.jare.2020.01.010 based on host–guest modulated dynamic hydrogel
bioink for osteochondral regeneration. Adv Funct Mater.
103. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal
stem cell-laden construct with core-shell nanospheres 2022;32:2200710.
for cartilage tissue engineering. Nanotechnology. doi: 10.1002/adfm.202200710
2018;29:185101. 115. Distler T, Solisito AA, Schneidereit D, Friedrich O, Detsch
doi: 10.1088/1361-6528/aaafa1 R, Boccaccini AR. 3D printed oxidized alginate-gelatin
bioink provides guidance for C2C12 muscle precursor
104. Cui X, Breitenkamp K, Finn MG, Martin Lotz, D’Lima DD.
Direct human cartilage repair using three-dimensional cell orientation and differentiation via shear stress during
bioprinting technology. Tissue Eng Part A. 2012;18:1304-1312. bioprinting. Biofabrication. 2020;12:045005.
doi: 10.1089/ten.TEA.2011.0543 doi: 10.1088/1758-5090/ab98e4
116. Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF.
105. Burdis R, Chariyev-Prinz F, Kelly DJ. Bioprinting of
biomimetic self-organised cartilage with a supporting joint Current methods for skeletal muscle tissue repair and
fixation device. Biofabrication. 2021;14:015008. regeneration. Biomed Res Int. 2018;2018:1984879.
doi: 10.1088/1758-5090/ac36be doi: 10.1155/2018/1984879
117. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in
106. Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly
DJ. 3D bioprinting of developmentally inspired templates for skeletal muscle tissue engineering. Small. 2019;15:e1805530.
whole bone organ engineering. Adv Healthc Mater. 2016;5: doi: 10.1002/smll.201805530
2352-2352. 118. Tidball JG. Mechanisms of muscle injury, repair, and
doi: 10.1002/adhm.201670100 regeneration. Compr Physiol. 2011;1:2029-2062.
doi: 10.1002/cphy.c100092
107. Critchley SE, Kelly DJ. Bioinks for bioprinting functional
meniscus and articular cartilage. J 3D Print Med. 2017;1: 119. Corona BT, Rivera JC, Owens JG, Wenke JC, Rathbone CR.
269-290. Volumetric muscle loss leads to permanent disability following
doi: 10.2217/3dp-2017-0012 extremity trauma. J Rehabil Res Dev. 2015;52:785-792.
doi: 10.1682/JRRD.2014.07.0165
108. Kosik-Kozioł A, Costantini M, Bolek T, et al. PLA short sub-
micron fiber reinforcement of 3D bioprinted alginate constructs 120. Langridge B, Griffin M, Butler PE. Regenerative medicine for
for cartilage regeneration. Biofabrication. 2017;9:044105. skeletal muscle loss: A review of current tissue engineering
doi: 10.1088/1758-5090/aa90d7 approaches. J Mater Sci Mater Med. 2021;32:15.
doi: 10.1007/s10856-020-06476-5
109. Pei Z, Gao M, Xing J, et al. Experimental study on repair
of cartilage defects in the rabbits with GelMA-MSCs 121. Lin CH, Lin YT, Yeh JT, Chen C-T. Free functioning muscle
scaffold prepared by three-dimensional bioprinting. transfer for lower extremity posttraumatic composite
Int J Bioprint. 2023;9. structure and functional defect. Plast Reconstr Surg.
doi: 10.18063/ijb.v9i2.662 2007;119:2118-2126.
doi: 10.1097/01.prs.0000260595.85557.41
110. Mancini IAD, Vindas Bolaños RA, Brommer H, et al.
Fixation of hydrogel constructs for cartilage repair in 122. Aguilar CA, Greising SM, Watts A, et al. Multiscale analysis
the equine model: A challenging issue. Tissue Eng Part C of a regenerative therapy for treatment of volumetric muscle
Methods. 2017;23:804-814. loss injury. Cell Death Discov. 2018;4:33.
doi: 10.1089/ten.TEC.2017.0200 doi: 10.1038/s41420-018-0027-8
111. Ofek G, Athanasiou K. Micromechanical properties of 123. Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle
chondrocytes and chondrons: Relevance to articular cartilage construct with tissue-derived bioink for the treatment of
tissue engineering. J Mech Mater Struct. 2007;2:1059-1086. volumetric muscle loss. Biomaterials. 2019;206:160-169.
doi: 10.2140/jomms.2007.2.1059 doi: 10.1016/j.biomaterials.2019.03.036
Volume 10 Issue 1 (2024) 102 https://doi.org/10.36922/ijb.1037

