Page 110 - IJB-10-1
P. 110

International Journal of Bioprinting                                3D bioprinting for musculoskeletal system




            100. Lee AK, Lin YH, Tsai CH, Chang W-T, Lin T-L, Shie M-Y.   112. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting
               Digital  light  processing  bioprinted  human  chondrocyte-  of hydrogel constructs with cell and material gradients for
               laden poly (γ-glutamic acid)/hyaluronic acid bio-ink towards   the regeneration of full-thickness chondral defect using a
               cartilage tissue engineering. Biomedicines. 2021;9:714.   microfluidic printing head. Biofabrication. 2019;11:044101.
               doi: 10.3390/biomedicines9070714                   doi: 10.1088/1758-5090/ab2622
            101. Lipskas J, Deep K, Yao W. Robotic-assisted 3D bio-printing   113. Wu Y, Ayan B, Moncal KK,  et al. Hybrid bioprinting of
               for repairing bone and cartilage defects through a minimally   zonally stratified human articular cartilage using scaffold-
               invasive approach. Sci Rep. 2019;9:3746.           free  tissue  strands  as  building  blocks.  Adv Healthc Mater.
               doi: 10.1038/s41598-019-38972-2                    2020;9:e2001657.
                                                                  doi: 10.1002/adhm.202001657
            102. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted
               in situ 3D printing in cartilage regeneration with HAMA   114. Dai W, Zhang L, Yu Y, et al. 3D bioprinting of heterogeneous
               hydrogel: An in vivo study. J Adv Res. 2020;23:123-132.   constructs providing tissue-specific microenvironment
               doi: 10.1016/j.jare.2020.01.010                    based on host–guest modulated dynamic hydrogel
                                                                  bioink for osteochondral regeneration.  Adv Funct Mater.
            103. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal
               stem cell-laden construct with core-shell nanospheres   2022;32:2200710.
               for  cartilage  tissue  engineering.  Nanotechnology.      doi: 10.1002/adfm.202200710
               2018;29:185101.                                 115. Distler T, Solisito AA, Schneidereit D, Friedrich O, Detsch
               doi: 10.1088/1361-6528/aaafa1                      R, Boccaccini AR. 3D printed oxidized alginate-gelatin
                                                                  bioink provides guidance for C2C12 muscle precursor
            104.  Cui X, Breitenkamp K, Finn MG, Martin Lotz, D’Lima DD.
               Direct human cartilage repair using three-dimensional   cell orientation and differentiation via shear stress during
               bioprinting technology. Tissue Eng Part A. 2012;18:1304-1312.   bioprinting. Biofabrication. 2020;12:045005.
               doi: 10.1089/ten.TEA.2011.0543                     doi: 10.1088/1758-5090/ab98e4
                                                               116. Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF.
            105. Burdis R, Chariyev-Prinz  F, Kelly DJ. Bioprinting of
               biomimetic self-organised cartilage with a supporting joint   Current methods for skeletal muscle tissue repair and
               fixation device. Biofabrication. 2021;14:015008.   regeneration. Biomed Res Int. 2018;2018:1984879.
               doi: 10.1088/1758-5090/ac36be                      doi: 10.1155/2018/1984879
                                                               117. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in
            106. Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly
               DJ. 3D bioprinting of developmentally inspired templates for   skeletal muscle tissue engineering. Small. 2019;15:e1805530.
               whole bone organ engineering. Adv Healthc Mater. 2016;5:      doi: 10.1002/smll.201805530
               2352-2352.                                      118. Tidball JG. Mechanisms of muscle injury, repair, and
               doi: 10.1002/adhm.201670100                        regeneration. Compr Physiol. 2011;1:2029-2062.
                                                                  doi: 10.1002/cphy.c100092
            107.  Critchley  SE,  Kelly  DJ.  Bioinks  for  bioprinting  functional
               meniscus and articular cartilage.  J 3D Print Med.  2017;1:   119.  Corona BT, Rivera JC, Owens JG, Wenke JC, Rathbone CR.
               269-290.                                           Volumetric muscle loss leads to permanent disability following
               doi: 10.2217/3dp-2017-0012                         extremity trauma. J Rehabil Res Dev. 2015;52:785-792.
                                                                  doi: 10.1682/JRRD.2014.07.0165
            108.  Kosik-Kozioł A, Costantini M, Bolek T, et al. PLA short sub-
               micron fiber reinforcement of 3D bioprinted alginate constructs   120. Langridge B, Griffin M, Butler PE. Regenerative medicine for
               for cartilage regeneration. Biofabrication. 2017;9:044105.   skeletal muscle loss: A review of current tissue engineering
               doi: 10.1088/1758-5090/aa90d7                      approaches. J Mater Sci Mater Med. 2021;32:15.
                                                                  doi: 10.1007/s10856-020-06476-5
            109. Pei Z, Gao M, Xing J, et al. Experimental study on repair
               of cartilage defects in the rabbits with GelMA-MSCs   121. Lin CH, Lin YT, Yeh JT, Chen C-T. Free functioning muscle
               scaffold  prepared  by  three-dimensional  bioprinting.    transfer for lower extremity posttraumatic composite
               Int J Bioprint. 2023;9.                            structure and functional defect.  Plast Reconstr Surg.
               doi: 10.18063/ijb.v9i2.662                         2007;119:2118-2126.
                                                                  doi: 10.1097/01.prs.0000260595.85557.41
            110. Mancini IAD, Vindas Bolaños RA, Brommer H,  et al.
               Fixation of hydrogel constructs for cartilage repair in   122. Aguilar CA, Greising SM, Watts A, et al. Multiscale analysis
               the equine model: A challenging issue. Tissue Eng Part C   of a regenerative therapy for treatment of volumetric muscle
               Methods. 2017;23:804-814.                          loss injury. Cell Death Discov. 2018;4:33.
               doi: 10.1089/ten.TEC.2017.0200                     doi: 10.1038/s41420-018-0027-8
            111. Ofek G, Athanasiou K. Micromechanical properties of   123. Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle
               chondrocytes and chondrons: Relevance to articular cartilage   construct with tissue-derived bioink  for  the treatment of
               tissue engineering. J Mech Mater Struct. 2007;2:1059-1086.   volumetric muscle loss. Biomaterials. 2019;206:160-169.
               doi: 10.2140/jomms.2007.2.1059                     doi: 10.1016/j.biomaterials.2019.03.036

            Volume 10 Issue 1 (2024)                       102                          https://doi.org/10.36922/ijb.1037
   105   106   107   108   109   110   111   112   113   114   115