Page 109 - IJB-10-1
P. 109

International Journal of Bioprinting                                3D bioprinting for musculoskeletal system




            77.  Schon BS, Hooper GJ, Woodfield TBF. Modular tissue   stem cell spheroids and chondrocytes.  Biofabrication.
               assembly strategies for biofabrication of engineered   2022;14:035003.
               cartilage. Ann Biomed Eng. 2017;45:100-114.        doi: 10.1088/1758-5090/ac63ee
               doi: 10.1007/s10439-016-1609-3
                                                               89.  Bonifacio MA, Cometa S, Cochis A, et al. A bioprintable
            78.  Wei W, Dai H. Articular cartilage and osteochondral tissue   gellan gum/lignin hydrogel: A smart and sustainable route
               engineering techniques: Recent advances and challenges.   for cartilage regeneration. Int J Biol Macromol. 2022;216:336-
               Bioact Mater. 2021;6:4830-4855.                    346.
               doi: 10.1016/j.bioactmat.2021.05.011               doi: 10.1016/j.ijbiomac.2022.07.002
            79.  Borrelli J, Jr., Olson SA, Godbout C,  Schemitsch EH,   90.  Wang B, Diaz-Payno PJ, Browe DC,  et al. Affinity-bound
               Stannard JP, Giannoudis PV. Understanding articular   growth factor within sulfated interpenetrating network
               cartilage injury and potential treatments. J Orthop Trauma.   bioinks for bioprinting cartilaginous tissues. Acta Biomater.
               2019;33(Suppl 6):S6-S12.                           2021;128:130-142.
               doi: 10.1097/bot.0000000000001472                  doi: 10.1016/j.actbio.2021.04.016
            80.  Daly  AC,  Freeman  FE,  Gonzalez-Fernandez T,  Critchley   91.  Shi W, Fang F, Kong Y, et al. Dynamic hyaluronic acid hydrogel
               SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and   with covalent linked gelatin as an anti-oxidative bioink for
               osteochondral tissue engineering.  Adv Healthc Mater.   cartilage tissue engineering. Biofabrication. 2021;14:014107.
               2017;6:1700298.                                    doi: 10.1088/1758-5090/ac42de
               doi: 10.1002/adhm.201700298
                                                               92.  Li Z, Zhang X, Yuan T,  et al. Addition of platelet-rich
            81.  Liu Y, Shah KM, Luo J. Strategies for articular cartilage repair   plasma to silk fibroin hydrogel bioprinting for cartilage
               and regeneration. Front Bioeng Biotechnol. 2021;9:770655.   regeneration. Tissue Eng Part A. 2020;26:886-895.
               doi: 10.3389/fbioe.2021.770655                     doi: 10.1089/ten.TEA.2019.0304
            82.  Zhu S, Chen P, Chen Y,  et al. 3D-printed extracellular   93.  İlhan GT, Irmak G, Gümüşderelioğlu M. Microwave assisted
               matrix/polyethylene  glycol  diacrylate  hydrogel  methacrylation of Kappa carrageenan: A bioink for cartilage
               incorporating  the  anti-inflammatory  phytomolecule  tissue engineering. Int J Biol Macromol. 2020;164:3523-3534.
               honokiol for regeneration of osteochondral defects.       doi: 10.1016/j.ijbiomac.2020.08.241
               Am J Sports Med. 2020;48:2808-2818.             94.  Antich C, de Vicente J, Jiménez G,  et al. Bio-inspired
               doi: 10.1177/0363546520941842
                                                                  hydrogel composed of hyaluronic acid and alginate as a
            83.  Hotham WE, Malviya A. A systematic review of surgical   potential bioink for 3D bioprinting of articular cartilage
               methods to restore articular cartilage in the hip. Bone Joint   engineering constructs. Acta Biomater. 2020;106:114-123.
               Res. 2018;7:336-342.                               doi: 10.1016/j.actbio.2020.01.046
               doi: 10.1302/2046-3758.75.Bjr-2017-0331
                                                               95.  Sun Y, You Y, Jiang W,  Zhai Z, Dai K. 3D-bioprinting a
            84.  Hunziker EB. Articular cartilage repair: Basic science   genetically inspired cartilage scaffold with GDF5-conjugated
               and clinical progress. A review of the current status and   BMSC-laden  hydrogel  and  polymer  for cartilage  repair.
               prospects. Osteoarthritis Cartilage. 2002;10:432-463.   Theranostics. 2019;9:6949-6961.
               doi: 10.1053/joca.2002.0801                        doi: 10.7150/thno.38061
            85.  Lim KS,  Abinzano F, Bernal PN,  et al. One-step   96.  Kosik-Kozioł A, Costantini M, Mróz A, et al. 3D bioprinted
               photoactivation of a dual-functionalized bioink as cell   hydrogel model incorporating β-tricalcium phosphate
               carrier and cartilage-binding glue for chondral regeneration.   for calcified cartilage tissue engineering.  Biofabrication.
               Adv Healthc Mater. 2020;9:e1901792.                2019;11:035016.
               doi: 10.1002/adhm.201901792                        doi: 10.1088/1758-5090/ab15cb
            86.  Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly   97.  Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an
               DJ. Fiber reinforced cartilage ECM functionalized bioinks   in situ crosslinking technique towards engineering cartilage
               for functional cartilage tissue engineering.  Adv Healthc   tissue. Sci Rep. 2019;9:19987.
               Mater. 2019;8:e1801501.                            doi: 10.1038/s41598-019-56117-3
               doi: 10.1002/adhm.201801501
                                                               98.  Onofrillo C, Duchi S, O’Connell CD, et al. Biofabrication of
            87.  Sun Y, You Y, Jiang W, Wang B, Wu Q, Dai K. 3D bioprinting   human articular cartilage: A path towards the development of a
               dual-factor releasing and gradient-structured constructs ready   clinical treatment. Biofabrication. 2018;10:045006.
               to implant for anisotropic cartilage regeneration.  Sci Adv.      doi: 10.1088/1758-5090/aad8d9
               2020;6:eaay1422.                                99.  Huang Y, Meng X, Zhou Z, et al. A naringin-derived bioink
               doi: 10.1126/sciadv.aay1422
                                                                  enhances the shape fidelity of 3D bioprinting and efficiency of
            88.  Zhang L, Tang H, Xiahou Z,  et al. Solid multifunctional   cartilage defect repair. J Mater Chem B. 2022;10:7030-7044.
               granular bioink for constructing chondroid basing on      doi: 10.1039/d2tb01247b



            Volume 10 Issue 1 (2024)                       101                          https://doi.org/10.36922/ijb.1037
   104   105   106   107   108   109   110   111   112   113   114