Page 107 - IJB-10-1
P. 107
International Journal of Bioprinting 3D bioprinting for musculoskeletal system
cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. cardiac decellularized extracellular matrix. Acta Biomater.
2018;83:195-201. 2021;119:75-88.
doi: 10.1016/j.msec.2017.09.002 doi: 10.1016/j.actbio.2020.11.006
34. de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, 45. Ying GL, Jiang N, Maharjan S, et al. Aqueous two-phase
Porcionatto MA. Strategies to use fibrinogen as bioink for emulsion bioink-enabled 3D bioprinting of porous
3D bioprinting fibrin-based soft and hard tissues. Acta hydrogels. Adv Mater. 2018;30:e1805460.
Biomater. 2020;117:60-76. doi: 10.1002/adma.201805460
doi: 10.1016/j.actbio.2020.09.024
46. Jia L, Hua Y, Zeng J, et al. Bioprinting and regeneration
35. de Melo BAG, Jodat YA, Mehrotra S, et al. 3D printed of auricular cartilage using a bioactive bioink based on
cartilage-like tissue constructs with spatially controlled microporous photocrosslinkable acellular cartilage matrix.
mechanical properties. Adv Funct Mater. 2019;29: Bioact Mater. 2022;16:66-81.
1906330. doi: 10.1016/j.bioactmat.2022.02.032
doi: 10.1002/adfm.201906330
47. Zhang W, Wang N, Yang M, et al. Periosteum and
36. Li T, Hou J, Wang L, et al. Bioprinted anisotropic scaffolds development of the tissue-engineered periosteum for
with fast stress relaxation bioink for engineering 3D skeletal guided bone regeneration. J Orthop Translat. 2022;33:
muscle and repairing volumetric muscle loss. Acta Biomater. 41-54.
2022;156:21-36. doi: 10.1016/j.jot.2022.01.002
doi: 10.1016/j.actbio.2022.08.037
48. Li Y, Pan Q, Xu J, et al. Overview of methods for enhancing
37. Visscher DO, Lee H, van Zuijlen PPM, et al. A photo- bone regeneration in distraction osteogenesis: Potential
crosslinkable cartilage-derived extracellular matrix bioink roles of biometals. J Orthop Translat. 2021;27:110-118.
for auricular cartilage tissue engineering. Acta Biomater. doi: 10.1016/j.jot.2020.11.008
2021;121:193-203. 49. Agarwal R, García AJ. Biomaterial strategies for engineering
doi: 10.1016/j.actbio.2020.11.029
implants for enhanced osseointegration and bone repair.
38. Sahranavard M, Sarkari S, Safavi S, Ghorbani F. Three- Adv Drug Deliv Rev. 2015;94:53-62.
dimensional bio-printing of decellularized extracellular doi: 10.1016/j.addr.2015.03.013
matrix-based bio-inks for cartilage regeneration: A 50. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW,
systematic review. Biomater Transl. 2022;3:105-115. Luyten FP, Picart C. Bone regeneration strategies: Engineered
doi: 10.12336/biomatertransl.2022.02.004
scaffolds, bioactive molecules and stem cells current stage
39. Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular and future perspectives. Biomaterials. 2018;180:143-162.
matrix-based bioinks for engineering tissue- and organ-specific doi: 10.1016/j.biomaterials.2018.07.017
microenvironments. Chem Rev. 2020;120:10608-10661. 51. Mauffrey C, Barlow BT, Smith W. Management of segmental
doi: 10.1021/acs.chemrev.9b00808
bone defects. J Am Acad Orthop Surg. 2015;23:143-153.
40. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/ doi: 10.5435/jaaos-d-14-00018
alginate bioink for fabricating a 3D cell-laden mesh 52. Tang H, Bi F, Chen G, et al. 3D-bioprinted recombination
structure for bone tissue engineering. Carbohydr Polym. structure of Hertwig’s epithelial root sheath cells and dental
2020;250:116914. papilla cells for alveolar bone regeneration. Int J Bioprint.
doi: 10.1016/j.carbpol.2020.116914
2022;8:512.
41. Yoncheva K, Calleja P, Agüeros M, et al. Stabilized micelles doi: 10.18063/ijb.v8i3.512
as delivery vehicles for paclitaxel. Int J Pharm. 2012;436:258- 53. Nulty J, Freeman FE, Browe DC, et al. 3D bioprinting of
264. prevascularised implants for the repair of critically-sized
doi: 10.1016/j.ijpharm.2012.06.030
bone defects. Acta Biomater. 2021;126:154-169.
42. Shamma RN, Sayed RH, Madry H, El Sayed NS, Cucchiarini doi: 10.1016/j.actbio.2021.03.003
M. Triblock copolymer bioinks in hydrogel three- 54. Shen M, Wang L, Gao Y, et al. 3D bioprinting of in
dimensional printing for regenerative medicine: A focus on situ vascularized tissue engineered bone for repairing
pluronic f127. Tissue Eng Part B Rev. 2022;28:451-463. large segmental bone defects. Mater Today Bio. 2022;16:
doi: 10.1089/ten.TEB.2021.0026
100382.
43. Mozetic P, Giannitelli SM, Gori M, Trombetta M, Rainer A. doi: 10.1016/j.mtbio.2022.100382
Engineering muscle cell alignment through 3D bioprinting. 55. Moncal KK, Tigli Aydın RS, Godzik KP, et al. Controlled
J Biomed Mater Res A. 2017;105:2582-2588. Co-delivery of pPDGF-B and pBMP-2 from intraoperatively
doi: 10.1002/jbm.a.36117
bioprinted bone constructs improves the repair of calvarial
44. Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim D-H. defects in rats. Biomaterials. 2022;281:121333.
3D bioprinting of mechanically tuned bioinks derived from doi: 10.1016/j.biomaterials.2021.121333
Volume 10 Issue 1 (2024) 99 https://doi.org/10.36922/ijb.1037

