Page 107 - IJB-10-1
P. 107

International Journal of Bioprinting                                3D bioprinting for musculoskeletal system




               cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl.   cardiac decellularized extracellular matrix.  Acta Biomater.
               2018;83:195-201.                                   2021;119:75-88.
               doi: 10.1016/j.msec.2017.09.002                    doi: 10.1016/j.actbio.2020.11.006
            34.  de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR,   45.  Ying GL, Jiang N, Maharjan S,  et al. Aqueous two-phase
               Porcionatto MA. Strategies to use fibrinogen as bioink for   emulsion bioink-enabled 3D bioprinting of porous
               3D bioprinting fibrin-based soft and hard tissues.  Acta   hydrogels. Adv Mater. 2018;30:e1805460.
               Biomater. 2020;117:60-76.                          doi: 10.1002/adma.201805460
               doi: 10.1016/j.actbio.2020.09.024
                                                               46.  Jia  L, Hua  Y, Zeng J,  et  al. Bioprinting  and  regeneration
            35.  de Melo BAG, Jodat YA, Mehrotra S,  et al. 3D printed   of auricular cartilage using a bioactive bioink based on
               cartilage-like  tissue  constructs  with  spatially  controlled   microporous photocrosslinkable acellular cartilage matrix.
               mechanical properties.  Adv  Funct  Mater.  2019;29:   Bioact Mater. 2022;16:66-81.
               1906330.                                           doi: 10.1016/j.bioactmat.2022.02.032
               doi: 10.1002/adfm.201906330
                                                               47.  Zhang W, Wang N, Yang M,  et al. Periosteum and
            36.  Li T, Hou J, Wang L, et al. Bioprinted anisotropic scaffolds   development of the tissue-engineered periosteum for
               with fast stress relaxation bioink for engineering 3D skeletal   guided  bone  regeneration.  J Orthop Translat.  2022;33:
               muscle and repairing volumetric muscle loss. Acta Biomater.   41-54.
               2022;156:21-36.                                    doi: 10.1016/j.jot.2022.01.002
               doi: 10.1016/j.actbio.2022.08.037
                                                               48.  Li Y, Pan Q, Xu J, et al. Overview of methods for enhancing
            37.  Visscher DO, Lee H, van Zuijlen PPM,  et al. A photo-  bone  regeneration  in  distraction  osteogenesis:  Potential
               crosslinkable cartilage-derived extracellular matrix bioink   roles of biometals. J Orthop Translat. 2021;27:110-118.
               for auricular cartilage tissue engineering.  Acta Biomater.      doi: 10.1016/j.jot.2020.11.008
               2021;121:193-203.                               49.  Agarwal R, García AJ. Biomaterial strategies for engineering
               doi: 10.1016/j.actbio.2020.11.029
                                                                  implants for enhanced osseointegration and bone repair.
            38.  Sahranavard M,  Sarkari S,  Safavi S,  Ghorbani F. Three-  Adv Drug Deliv Rev. 2015;94:53-62.
               dimensional bio-printing of decellularized extracellular      doi: 10.1016/j.addr.2015.03.013
               matrix-based bio-inks for cartilage regeneration: A   50.  Ho-Shui-Ling A, Bolander J, Rustom LE,  Johnson AW,
               systematic review. Biomater Transl. 2022;3:105-115.   Luyten FP, Picart C. Bone regeneration strategies: Engineered
               doi: 10.12336/biomatertransl.2022.02.004
                                                                  scaffolds, bioactive molecules and stem cells current stage
            39.  Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular   and future perspectives. Biomaterials. 2018;180:143-162.
               matrix-based bioinks for engineering tissue- and organ-specific      doi: 10.1016/j.biomaterials.2018.07.017
               microenvironments. Chem Rev. 2020;120:10608-10661.   51.  Mauffrey C, Barlow BT, Smith W. Management of segmental
               doi: 10.1021/acs.chemrev.9b00808
                                                                  bone defects. J Am Acad Orthop Surg. 2015;23:143-153.
            40.  Lee  J,  Hong J,  Kim  W,  Kim  GH. Bone-derived  dECM/     doi: 10.5435/jaaos-d-14-00018
               alginate bioink for fabricating a 3D  cell-laden  mesh   52.  Tang H, Bi F, Chen G, et al. 3D-bioprinted recombination
               structure for bone tissue engineering.  Carbohydr Polym.   structure of Hertwig’s epithelial root sheath cells and dental
               2020;250:116914.                                   papilla cells for alveolar bone regeneration. Int J Bioprint.
               doi: 10.1016/j.carbpol.2020.116914
                                                                  2022;8:512.
            41.  Yoncheva K, Calleja P, Agüeros M, et al. Stabilized micelles      doi: 10.18063/ijb.v8i3.512
               as delivery vehicles for paclitaxel. Int J Pharm. 2012;436:258-  53.  Nulty J, Freeman FE, Browe DC,  et al. 3D bioprinting of
               264.                                               prevascularised implants for the repair of critically-sized
               doi: 10.1016/j.ijpharm.2012.06.030
                                                                  bone defects. Acta Biomater. 2021;126:154-169.
            42.  Shamma RN, Sayed RH, Madry H, El Sayed NS, Cucchiarini      doi: 10.1016/j.actbio.2021.03.003
               M. Triblock copolymer bioinks in hydrogel three-  54.  Shen M, Wang L, Gao Y,  et al. 3D bioprinting of in
               dimensional printing for regenerative medicine: A focus on   situ vascularized tissue engineered bone for repairing
               pluronic f127. Tissue Eng Part B Rev. 2022;28:451-463.   large segmental bone defects.  Mater Today Bio.  2022;16:
               doi: 10.1089/ten.TEB.2021.0026
                                                                  100382.
            43.  Mozetic P, Giannitelli SM, Gori M, Trombetta M, Rainer A.      doi: 10.1016/j.mtbio.2022.100382
               Engineering muscle cell alignment through 3D bioprinting.   55.  Moncal KK, Tigli Aydın RS, Godzik KP, et al. Controlled
               J Biomed Mater Res A. 2017;105:2582-2588.          Co-delivery of pPDGF-B and pBMP-2 from intraoperatively
               doi: 10.1002/jbm.a.36117
                                                                  bioprinted bone constructs improves the repair of calvarial
            44.  Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim D-H.   defects in rats. Biomaterials. 2022;281:121333.
               3D  bioprinting  of  mechanically  tuned  bioinks  derived  from      doi: 10.1016/j.biomaterials.2021.121333



            Volume 10 Issue 1 (2024)                        99                          https://doi.org/10.36922/ijb.1037
   102   103   104   105   106   107   108   109   110   111   112