Page 111 - IJB-10-1
P. 111

International Journal of Bioprinting                                3D bioprinting for musculoskeletal system




            124. Behre A, Tashman JW, Dikyol C, et al. 3D bioprinted patient-  137. Zhang Y, Zhang Z, Wang Y,  Su Y, Chen M. 3D myotube
               specific extracellular matrix scaffolds for soft tissue defects.   guidance on hierarchically organized anisotropic and
               Adv Healthc Mater. 2022;11:e2200866.               conductive fibers for skeletal muscle tissue engineering.
               doi: 10.1002/adhm.202200866                        Mater Sci Eng C Mater Biol Appl. 2020;116:111070.
                                                                  doi: 10.1016/j.msec.2020.111070
            125. Luo  Z,  Tang  G,  Ravanbakhsh  H,  et  al.  Vertical  extrusion
               cryo(bio)printing for anisotropic tissue manufacturing. Adv   138. Ostrovidov S, Hosseini V, Ahadian S, et al. Skeletal muscle
               Mater. 2022;34:e2108931.                           tissue engineering: Methods to form skeletal myotubes and
               doi: 10.1002/adma.202108931                        their applications. Tissue Eng Part B Rev. 2014;20:403-436.
            126. Mostafavi A, Samandari M, Karvar M,  et al. Colloidal      doi: 10.1089/ten.TEB.2013.0534
               multiscale porous adhesive (bio)inks facilitate scaffold   139. Yeo M, Kim G. Three-dimensional microfibrous bundle
               integration. Appl Phys Rev. 2021;8:041415.         structure fabricated using an electric field-assisted/cell
               doi: 10.1063/5.0062823                             printing process for muscle tissue regeneration.  ACS
            127. Kim JH, Kim I, Seol YJ, et al. Neural cell integration into 3D   Biomater Sci Eng. 2018;4:728-738.
               bioprinted skeletal muscle constructs accelerates restoration      doi: 10.1021/acsbiomaterials.7b00983
               of muscle function. Nat Commun. 2020;11:1025.   140. Bilgen B, Jayasuriya CT, Owens BD. Current concepts in
               doi: 10.1038/s41467-020-14930-9                    meniscus tissue engineering and repair. Adv Healthc Mater.
            128. Christensen KW, Turner J,  Coughenour K,  et al.   2018;7:1701407.
               Assembled cell-decorated collagen (AC-DC) fiber      doi: 10.1002/adhm.201701407
               bioprinted implants with musculoskeletal tissue properties   141. Chae  S,  Lee  SS, Choi YJ,  et  al.  3D cell-printing of
               promote functional recovery in volumetric muscle loss.    biocompatible and functional meniscus constructs using
               Adv Healthc Mater. 2022;11:e2101357.               meniscus-derived bioink. Biomaterials. 2021;267:120466.
               doi: 10.1002/adhm.202101357                        doi: 10.1016/j.biomaterials.2020.120466
            129. Wang Y, Wang Q, Luo S, et al. 3D bioprinting of conductive   142. Kwon  H,  Brown  WE,  Lee  CA,  et  al.  Surgical  and tissue
               hydrogel for enhanced myogenic differentiation.  Regen   engineering strategies for articular cartilage and meniscus
               Biomater. 2021;8:rbab035.                          repair. Nat Rev Rheumatol. 2019;15:550-570.
               doi: 10.1093/rb/rbab035                            doi: 10.1038/s41584-019-0255-1
            130. Kim JH, Seol YJ, Ko IK, et al. 3D bioprinted human skeletal   143. Roemer  FW, Kwoh  CK,  Hannon MJ,  et  al. Partial
               muscle constructs for muscle function restoration. Sci Rep.   meniscectomy is associated with increased risk of incident
               2018;8:12307.                                      radiographic osteoarthritis and worsening cartilage damage
               doi: 10.1038/s41598-018-29968-5                    in the following year. Eur Radiol. 2017;27:404-413.
            131. Yang GH, Kim W, Kim J, Kim GH. A skeleton muscle model      doi: 10.1007/s00330-016-4361-z
               using  GelMA-based  cell-aligned  bioink  processed  with   144. Noyes FR, Barber-Westin SD. Long-term survivorship and
               an electric-field assisted 3D/4D bioprinting.  Theranostics.   function of meniscus transplantation.  Am J Sports Med.
               2021;11:48-63.                                     2016; 44:2330-2338.
               doi: 10.7150/thno.50794                            doi: 10.1177/0363546516646375
            132. Kim W, Jang CH, Kim GH. A myoblast-laden collagen   145. Rosso F, Bisicchia S, Bonasia DE,  Amendola A. Meniscal
               bioink with fully aligned Au nanowires for  muscle-tissue   allograft transplantation: A systematic review. Am J Sports
               regeneration. Nano Lett. 2019;19:8612-8620.        Med. 2015;43:998-1007.
               doi: 10.1021/acs.nanolett.9b03182                  doi: 10.1177/0363546514536021
            133.  Yeo M, Kim G. Electrohydrodynamic-direct-printed cell-laden   146. Jiang D, Ao YF, Gong X,  Wang Y-J, Zheng Z-Z, Yu J-K.
               microfibrous structure using alginate-based bioink for effective   Comparative study on immediate versus delayed meniscus
               myotube formation. Carbohydr Polym. 2021;272:118444.   allograft transplantation: 4- to 6-year follow-up. Am J Sports
               doi: 10.1016/j.carbpol.2021.118444                 Med. 2014;42:2329-2337.
            134. Chen Y, Zhang J, Liu X,  et al. Noninvasive in vivo 3D      doi: 10.1177/0363546514541653
               bioprinting. Sci Adv. 2020;6:eaba7406.          147. Costa JB, Park J, Jorgensen AM,  et al. 3D bioprinted
               doi: 10.1126/sciadv.aba7406                        highly  elastic  hybrid  constructs  for  advanced
            135. Urciuolo A, Poli I, Brandolino L,  et al. Intravital three-  fibrocartilaginous tissue regeneration. Chem Mater. 2020;32:
               dimensional bioprinting. Nat Biomed Eng. 2020;4:901-915.   8733-8746.
               doi: 10.1038/s41551-020-0568-z                     doi: 10.1021/acs.chemmater.0c03556
            136. Jana S, Levengood SK, Zhang M. Anisotropic materials   148. Jian Z, Zhuang T, Qinyu T,  et al. 3D bioprinting of a
               for skeletal-muscle-tissue engineering.  Adv Mater.   biomimetic meniscal scaffold for application in tissue
               2016;28:10588-10612.                               engineering. Bioact Mater. 2021;6:1711-1726.
               doi: 10.1002/adma.201600240                        doi: 10.1016/j.bioactmat.2020.11.027

            Volume 10 Issue 1 (2024)                       103                          https://doi.org/10.36922/ijb.1037
   106   107   108   109   110   111   112   113   114   115   116