Page 111 - IJB-10-1
P. 111
International Journal of Bioprinting 3D bioprinting for musculoskeletal system
124. Behre A, Tashman JW, Dikyol C, et al. 3D bioprinted patient- 137. Zhang Y, Zhang Z, Wang Y, Su Y, Chen M. 3D myotube
specific extracellular matrix scaffolds for soft tissue defects. guidance on hierarchically organized anisotropic and
Adv Healthc Mater. 2022;11:e2200866. conductive fibers for skeletal muscle tissue engineering.
doi: 10.1002/adhm.202200866 Mater Sci Eng C Mater Biol Appl. 2020;116:111070.
doi: 10.1016/j.msec.2020.111070
125. Luo Z, Tang G, Ravanbakhsh H, et al. Vertical extrusion
cryo(bio)printing for anisotropic tissue manufacturing. Adv 138. Ostrovidov S, Hosseini V, Ahadian S, et al. Skeletal muscle
Mater. 2022;34:e2108931. tissue engineering: Methods to form skeletal myotubes and
doi: 10.1002/adma.202108931 their applications. Tissue Eng Part B Rev. 2014;20:403-436.
126. Mostafavi A, Samandari M, Karvar M, et al. Colloidal doi: 10.1089/ten.TEB.2013.0534
multiscale porous adhesive (bio)inks facilitate scaffold 139. Yeo M, Kim G. Three-dimensional microfibrous bundle
integration. Appl Phys Rev. 2021;8:041415. structure fabricated using an electric field-assisted/cell
doi: 10.1063/5.0062823 printing process for muscle tissue regeneration. ACS
127. Kim JH, Kim I, Seol YJ, et al. Neural cell integration into 3D Biomater Sci Eng. 2018;4:728-738.
bioprinted skeletal muscle constructs accelerates restoration doi: 10.1021/acsbiomaterials.7b00983
of muscle function. Nat Commun. 2020;11:1025. 140. Bilgen B, Jayasuriya CT, Owens BD. Current concepts in
doi: 10.1038/s41467-020-14930-9 meniscus tissue engineering and repair. Adv Healthc Mater.
128. Christensen KW, Turner J, Coughenour K, et al. 2018;7:1701407.
Assembled cell-decorated collagen (AC-DC) fiber doi: 10.1002/adhm.201701407
bioprinted implants with musculoskeletal tissue properties 141. Chae S, Lee SS, Choi YJ, et al. 3D cell-printing of
promote functional recovery in volumetric muscle loss. biocompatible and functional meniscus constructs using
Adv Healthc Mater. 2022;11:e2101357. meniscus-derived bioink. Biomaterials. 2021;267:120466.
doi: 10.1002/adhm.202101357 doi: 10.1016/j.biomaterials.2020.120466
129. Wang Y, Wang Q, Luo S, et al. 3D bioprinting of conductive 142. Kwon H, Brown WE, Lee CA, et al. Surgical and tissue
hydrogel for enhanced myogenic differentiation. Regen engineering strategies for articular cartilage and meniscus
Biomater. 2021;8:rbab035. repair. Nat Rev Rheumatol. 2019;15:550-570.
doi: 10.1093/rb/rbab035 doi: 10.1038/s41584-019-0255-1
130. Kim JH, Seol YJ, Ko IK, et al. 3D bioprinted human skeletal 143. Roemer FW, Kwoh CK, Hannon MJ, et al. Partial
muscle constructs for muscle function restoration. Sci Rep. meniscectomy is associated with increased risk of incident
2018;8:12307. radiographic osteoarthritis and worsening cartilage damage
doi: 10.1038/s41598-018-29968-5 in the following year. Eur Radiol. 2017;27:404-413.
131. Yang GH, Kim W, Kim J, Kim GH. A skeleton muscle model doi: 10.1007/s00330-016-4361-z
using GelMA-based cell-aligned bioink processed with 144. Noyes FR, Barber-Westin SD. Long-term survivorship and
an electric-field assisted 3D/4D bioprinting. Theranostics. function of meniscus transplantation. Am J Sports Med.
2021;11:48-63. 2016; 44:2330-2338.
doi: 10.7150/thno.50794 doi: 10.1177/0363546516646375
132. Kim W, Jang CH, Kim GH. A myoblast-laden collagen 145. Rosso F, Bisicchia S, Bonasia DE, Amendola A. Meniscal
bioink with fully aligned Au nanowires for muscle-tissue allograft transplantation: A systematic review. Am J Sports
regeneration. Nano Lett. 2019;19:8612-8620. Med. 2015;43:998-1007.
doi: 10.1021/acs.nanolett.9b03182 doi: 10.1177/0363546514536021
133. Yeo M, Kim G. Electrohydrodynamic-direct-printed cell-laden 146. Jiang D, Ao YF, Gong X, Wang Y-J, Zheng Z-Z, Yu J-K.
microfibrous structure using alginate-based bioink for effective Comparative study on immediate versus delayed meniscus
myotube formation. Carbohydr Polym. 2021;272:118444. allograft transplantation: 4- to 6-year follow-up. Am J Sports
doi: 10.1016/j.carbpol.2021.118444 Med. 2014;42:2329-2337.
134. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D doi: 10.1177/0363546514541653
bioprinting. Sci Adv. 2020;6:eaba7406. 147. Costa JB, Park J, Jorgensen AM, et al. 3D bioprinted
doi: 10.1126/sciadv.aba7406 highly elastic hybrid constructs for advanced
135. Urciuolo A, Poli I, Brandolino L, et al. Intravital three- fibrocartilaginous tissue regeneration. Chem Mater. 2020;32:
dimensional bioprinting. Nat Biomed Eng. 2020;4:901-915. 8733-8746.
doi: 10.1038/s41551-020-0568-z doi: 10.1021/acs.chemmater.0c03556
136. Jana S, Levengood SK, Zhang M. Anisotropic materials 148. Jian Z, Zhuang T, Qinyu T, et al. 3D bioprinting of a
for skeletal-muscle-tissue engineering. Adv Mater. biomimetic meniscal scaffold for application in tissue
2016;28:10588-10612. engineering. Bioact Mater. 2021;6:1711-1726.
doi: 10.1002/adma.201600240 doi: 10.1016/j.bioactmat.2020.11.027
Volume 10 Issue 1 (2024) 103 https://doi.org/10.36922/ijb.1037

