Page 108 - IJB-10-1
P. 108

International Journal of Bioprinting                                3D bioprinting for musculoskeletal system




            56.  Kim W, Jang CH, Kim G. Bone tissue engineering supported   66.  Li L, Shi J, Ma K,  et al. Robotic in situ 3D bio-printing
               by bioprinted cell constructs with endothelial cell spheroids.   technology for  repairing large segmental  bone  defects.
               Theranostics. 2022;12:5404-5417.                   J Adv Res. 2021;30:75-84.
               doi: 10.7150/thno.74852                            doi: 10.1016/j.jare.2020.11.011
            57.  Wang M, Li H, Yang Y, et al. A 3D-bioprinted scaffold with   67.  Gehlen  J,  Qiu  W,  Schädli  GN,  Müller  R,  Qin  X-H.
               doxycycline-controlled BMP2-expressing cells for inducing   Tomographic volumetric  bioprinting  of heterocellular
               bone regeneration and inhibiting bacterial infection. Bioact   bone-like tissues in seconds.  Acta Biomater.  2022;156:
               Mater. 2021;6:1318-1329.                           49-60.
               doi: 10.1016/j.bioactmat.2020.10.022               doi: 10.1016/j.actbio.2022.06.020
            58.  Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting   68.  Touya N, Devun M, Handschin C, et al. In vitro and in vivo
               of multicell-laden scaffolds containing bone morphogenic   characterization of a novel tricalcium silicate-based ink
               protein-4 for promoting M2 macrophage polarization and   for bone regeneration using laser-assisted bioprinting.
               accelerating bone defect repair in diabetes mellitus. Bioact   Biofabrication. 2022;14:024104.
               Mater. 2021;6:757-769.                             doi: 10.1088/1758-5090/ac584b
               doi: 10.1016/j.bioactmat.2020.08.030            69.  Tao J, Zhu S, Liao X, et al. DLP-based bioprinting of void-
            59.  Zhu H, Monavari M, Zheng K,  et al. 3D bioprinting of   forming hydrogels for enhanced stem-cell-mediated bone
               multifunctional dynamic nanocomposite bioinks incorporating   regeneration. Mater Today Bio. 2022;17:100487.
               Cu-doped mesoporous bioactive glass nanoparticles for bone      doi: 10.1016/j.mtbio.2022.100487
               tissue engineering. Small. 2022;18:e2104996.    70.  Rajput M, Mondal P, Yadav P, Chatterjee K. Light-based 3D
               doi: 10.1002/smll.202104996                        bioprinting of bone tissue scaffolds with tunable mechanical
            60.  Yu K, Huangfu H, Qin Q, et al. Application of bone marrow-  properties and architecture from photocurable silk fibroin.
               derived macrophages combined with bone mesenchymal   Int J Biol Macromol. 2022;202:644-656.
               stem cells in dual-channel three-dimensional bioprinting      doi: 10.1016/j.ijbiomac.2022.01.081
               scaffolds for early immune regulation and osteogenic   71.  Ryan EJ, Ryan AJ, González-Vázquez A,  et al. Collagen
               induction in rat calvarial defects. ACS Appl Mater Interfaces.   scaffolds functionalised with copper-eluting bioactive glass
               2022;14:47052-47065.                               reduce infection and enhance osteogenesis and angiogenesis
               doi: 10.1021/acsami.2c13557                        both in vitro and in vivo.  Biomaterials.  2019;197:
            61.  Sun X, Jiao X, Yang X, et al. 3D bioprinting of osteon-mimetic   405-416.
               scaffolds with hierarchical microchannels for vascularized      doi: 10.1016/j.biomaterials.2019.01.031
               bone tissue regeneration. Biofabrication. 2022;14:035008.   72.  Wang J, Wang H, Wang Y,  et al. Endothelialized
               doi: 10.1088/1758-5090/ac6700                      microvessels fabricated by microfluidics facilitate osteogenic
            62.  Pitacco P, Sadowska JM, O’Brien FJ, Kelly DJ. 3D bioprinting   differentiation and promote bone repair.  Acta Biomater.
               of cartilaginous templates for large bone defect healing. Acta   2022;142:85-98.
               Biomater. 2023;156:61-74.                          doi: 10.1016/j.actbio.2022.01.055
               doi: 10.1016/j.actbio.2022.07.037               73.  Amler AK, Thomas A, Tüzüner S, et al. 3D bioprinting of
            63.  Li Z, Li S, Yang J, et al. 3D bioprinted gelatin/gellan gum-based   tissue-specific osteoblasts and endothelial cells to model the
               scaffold with double-crosslinking network for vascularized   human jawbone. Sci Rep. 2021;11:4876.
               bone regeneration. Carbohydr Polym. 2022;290:119469.      doi: 10.1038/s41598-021-84483-4
               doi: 10.1016/j.carbpol.2022.119469              74.  Li J, Han F, Ma J,  et al. Targeting endogenous hydrogen
            64.  Zhang  J, Eyisoylu  H,  Qin XH,  Rubert M,  Müller  R.  3D   peroxide at bone defects promotes bone repair. Adv Funct
               bioprinting of graphene oxide-incorporated cell-laden bone   Mater. 2022;32:2111208.
               mimicking scaffolds for promoting scaffold fidelity, osteogenic      doi: 10.1002/adfm.202111208
               differentiation and mineralization. Acta Biomater. 2021;121:   75.  Arciola CR, Campoccia D, Montanaro L. Implant infections:
               637-652.                                           Adhesion, biofilm formation and immune evasion. Nat Rev
               doi: 10.1016/j.actbio.2020.12.026                  Microbiol. 2018;16:397-409.
            65.  Parthiban SP, Athirasala A, Tahayeri A,  Abdelmoniem      doi: 10.1038/s41579-018-0019-y
               R, George A, Bertassoni LE. BoneMA-synthesis and   76.  Josse  J,  Valour  F,  Maali  Y,  et  al.  Interaction  between
               characterization of a methacrylated bone-derived hydrogel   staphylococcal biofilm and bone: How does the presence
               for bioprinting of in-vitro vascularized tissue constructs.   of biofilm promote prosthesis loosening?  Front  Microbiol.
               Biofabrication. 2021;13:035031.                    2019;10:1602.
               doi: 10.1088/1758-5090/abb11f                      doi: 10.3389/fmicb.2019.01602




            Volume 10 Issue 1 (2024)                       100                          https://doi.org/10.36922/ijb.1037
   103   104   105   106   107   108   109   110   111   112   113