Page 108 - IJB-10-1
P. 108
International Journal of Bioprinting 3D bioprinting for musculoskeletal system
56. Kim W, Jang CH, Kim G. Bone tissue engineering supported 66. Li L, Shi J, Ma K, et al. Robotic in situ 3D bio-printing
by bioprinted cell constructs with endothelial cell spheroids. technology for repairing large segmental bone defects.
Theranostics. 2022;12:5404-5417. J Adv Res. 2021;30:75-84.
doi: 10.7150/thno.74852 doi: 10.1016/j.jare.2020.11.011
57. Wang M, Li H, Yang Y, et al. A 3D-bioprinted scaffold with 67. Gehlen J, Qiu W, Schädli GN, Müller R, Qin X-H.
doxycycline-controlled BMP2-expressing cells for inducing Tomographic volumetric bioprinting of heterocellular
bone regeneration and inhibiting bacterial infection. Bioact bone-like tissues in seconds. Acta Biomater. 2022;156:
Mater. 2021;6:1318-1329. 49-60.
doi: 10.1016/j.bioactmat.2020.10.022 doi: 10.1016/j.actbio.2022.06.020
58. Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting 68. Touya N, Devun M, Handschin C, et al. In vitro and in vivo
of multicell-laden scaffolds containing bone morphogenic characterization of a novel tricalcium silicate-based ink
protein-4 for promoting M2 macrophage polarization and for bone regeneration using laser-assisted bioprinting.
accelerating bone defect repair in diabetes mellitus. Bioact Biofabrication. 2022;14:024104.
Mater. 2021;6:757-769. doi: 10.1088/1758-5090/ac584b
doi: 10.1016/j.bioactmat.2020.08.030 69. Tao J, Zhu S, Liao X, et al. DLP-based bioprinting of void-
59. Zhu H, Monavari M, Zheng K, et al. 3D bioprinting of forming hydrogels for enhanced stem-cell-mediated bone
multifunctional dynamic nanocomposite bioinks incorporating regeneration. Mater Today Bio. 2022;17:100487.
Cu-doped mesoporous bioactive glass nanoparticles for bone doi: 10.1016/j.mtbio.2022.100487
tissue engineering. Small. 2022;18:e2104996. 70. Rajput M, Mondal P, Yadav P, Chatterjee K. Light-based 3D
doi: 10.1002/smll.202104996 bioprinting of bone tissue scaffolds with tunable mechanical
60. Yu K, Huangfu H, Qin Q, et al. Application of bone marrow- properties and architecture from photocurable silk fibroin.
derived macrophages combined with bone mesenchymal Int J Biol Macromol. 2022;202:644-656.
stem cells in dual-channel three-dimensional bioprinting doi: 10.1016/j.ijbiomac.2022.01.081
scaffolds for early immune regulation and osteogenic 71. Ryan EJ, Ryan AJ, González-Vázquez A, et al. Collagen
induction in rat calvarial defects. ACS Appl Mater Interfaces. scaffolds functionalised with copper-eluting bioactive glass
2022;14:47052-47065. reduce infection and enhance osteogenesis and angiogenesis
doi: 10.1021/acsami.2c13557 both in vitro and in vivo. Biomaterials. 2019;197:
61. Sun X, Jiao X, Yang X, et al. 3D bioprinting of osteon-mimetic 405-416.
scaffolds with hierarchical microchannels for vascularized doi: 10.1016/j.biomaterials.2019.01.031
bone tissue regeneration. Biofabrication. 2022;14:035008. 72. Wang J, Wang H, Wang Y, et al. Endothelialized
doi: 10.1088/1758-5090/ac6700 microvessels fabricated by microfluidics facilitate osteogenic
62. Pitacco P, Sadowska JM, O’Brien FJ, Kelly DJ. 3D bioprinting differentiation and promote bone repair. Acta Biomater.
of cartilaginous templates for large bone defect healing. Acta 2022;142:85-98.
Biomater. 2023;156:61-74. doi: 10.1016/j.actbio.2022.01.055
doi: 10.1016/j.actbio.2022.07.037 73. Amler AK, Thomas A, Tüzüner S, et al. 3D bioprinting of
63. Li Z, Li S, Yang J, et al. 3D bioprinted gelatin/gellan gum-based tissue-specific osteoblasts and endothelial cells to model the
scaffold with double-crosslinking network for vascularized human jawbone. Sci Rep. 2021;11:4876.
bone regeneration. Carbohydr Polym. 2022;290:119469. doi: 10.1038/s41598-021-84483-4
doi: 10.1016/j.carbpol.2022.119469 74. Li J, Han F, Ma J, et al. Targeting endogenous hydrogen
64. Zhang J, Eyisoylu H, Qin XH, Rubert M, Müller R. 3D peroxide at bone defects promotes bone repair. Adv Funct
bioprinting of graphene oxide-incorporated cell-laden bone Mater. 2022;32:2111208.
mimicking scaffolds for promoting scaffold fidelity, osteogenic doi: 10.1002/adfm.202111208
differentiation and mineralization. Acta Biomater. 2021;121: 75. Arciola CR, Campoccia D, Montanaro L. Implant infections:
637-652. Adhesion, biofilm formation and immune evasion. Nat Rev
doi: 10.1016/j.actbio.2020.12.026 Microbiol. 2018;16:397-409.
65. Parthiban SP, Athirasala A, Tahayeri A, Abdelmoniem doi: 10.1038/s41579-018-0019-y
R, George A, Bertassoni LE. BoneMA-synthesis and 76. Josse J, Valour F, Maali Y, et al. Interaction between
characterization of a methacrylated bone-derived hydrogel staphylococcal biofilm and bone: How does the presence
for bioprinting of in-vitro vascularized tissue constructs. of biofilm promote prosthesis loosening? Front Microbiol.
Biofabrication. 2021;13:035031. 2019;10:1602.
doi: 10.1088/1758-5090/abb11f doi: 10.3389/fmicb.2019.01602
Volume 10 Issue 1 (2024) 100 https://doi.org/10.36922/ijb.1037

