Page 113 - IJB-10-1
P. 113
International Journal of Bioprinting 3D bioprinting for musculoskeletal system
173. Yang J, Wang L, Zhang W, et al. Reverse reconstruction to in vitro models. Chem Rev. 2020;120:10547-10607.
and bioprinting of bacterial cellulose-based functional total doi: 10.1021/acs.chemrev.9b00789
intervertebral disc for therapeutic implantation. Small. 186. Kurian AG, Singh RK, Patel KD, Lee J-H, Kim H-W.
2018;14:1702582. Multifunctional GelMA platforms with nanomaterials for
doi: 10.1002/smll.201702582
advanced tissue therapeutics. Bioact Mater. 2022;8:267-295.
174. Gullbrand SE, Kim DH, Bonnevie E, et al. Towards the doi: 10.1016/j.bioactmat.2021.06.027
scale up of tissue engineered intervertebral discs for clinical
application. Acta Biomater. 2018;70:154-164. 187. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A
doi: 10.1016/j.actbio.2018.01.050 3D bioprinting system to produce human-scale tissue
constructs with structural integrity. Nat Biotechnol. 2016;34:
175. Yang J, Yang X, Wang L, et al. Biomimetic nanofibers can 312-319.
construct effective tissue-engineered intervertebral discs for doi: 10.1038/nbt.3413
therapeutic implantation. Nanoscale. 2017;9:13095.
doi: 10.1039/c7nr03944a 188. Kim BS, Ahn M, Cho WW, Gao G, Jang J, Cho D-W.
Engineering of diseased human skin equivalent using
176. Bhunia BK, Dey S, Bandyopadhyay A, Mandal BB. 3D 3D cell printing for representing pathophysiological
printing of annulus fibrosus anatomical equivalents hallmarks of type 2 diabetes in vitro. Biomaterials. 2021;272:
recapitulating angle-ply architecture for intervertebral disc 120776.
replacement. Appl Mater Today. 2021;23:101031. doi: 10.1016/j.biomaterials.2021.120776
doi: 10.1016/j.apmt.2021.101031
189. Bin Y, Dongzhen Z, Xiaoli C, et al. Modeling human
177. Liu Z, Wang H, Yuan Z, et al. High-resolution 3D printing hypertrophic scars with 3D preformed cellular aggregates
of angle-ply annulus fibrosus scaffolds for intervertebral disc bioprinting. Bioact Mater. 2022;10:247-254.
regeneration. Biofabrication. 2022;15:015015. doi: 10.1016/j.bioactmat.2021.09.004
doi: 10.1088/1758-5090/aca71f
190. Neufeld L, Yeini E, Pozzi S, Satchi-Fainaro R. 3D bioprinted
178. Hu D, Wu D, Huang L, et al. 3D bioprinting of cell-laden cancer models: From basic biology to drug development.
scaffolds for intervertebral disc regeneration. Mater Lett. Nat Rev Cancer. 2022;22:679-692.
2018;223:219-222. doi: 10.1038/s41568-022-00514-w
doi: 10.1016/j.matlet.2018.03.204
191. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting
179. Parker KK, Healy K, Bursac N. Tissue-engineered disease of tissues/organs for regenerative medicine and in-vitro
models. Nat Biomed Eng. 2018;2:879-880. models. Biomaterials. 2022;287:121639.
doi: 10.1038/s41551-018-0339-2 doi: 10.1016/j.biomaterials.2022.121639
180. Moran CJ, Ramesh A, Brama PA, O’Byrne JM, O’Brien 192. Han J, Jeon S, Kim MK, Jeong W, Yoo JJ, Kang H-W. In vitro
FJ, Levingstone TJ. The benefits and limitations of animal breast cancer model with patient-specific morphological
models for translational research in cartilage repair. J Exp features for personalized medicine. Biofabrication.
Orthop. 2016;3:1. 2022;14:034102.
doi: 10.1186/s40634-015-0037-x doi: 10.1088/1758-5090/ac6127
181. Benam KH, Dauth S, Hassell B, et al. Engineered in vitro 193. Neufeld L, Yeini E, Reisman N, et al. Microengineered
disease models. Annu Rev Pathol. 2015;10:195-262. perfusable 3D-bioprinted glioblastoma model for in
doi: 10.1146/annurev-pathol-012414-040418 vivo mimicry of tumor microenvironment. Sci Adv.
182. Takahashi K, Yamanaka S. Induction of pluripotent stem 2021;7:eabi9119.
cells from mouse embryonic and adult fibroblast cultures by doi: 10.1126/sciadv.abi9119
defined factors. Cell. 2006;126:663-676. 194. Hakobyan D, Médina C, Dusserre N, et al. Laser-assisted 3D
doi: 10.1016/j.cell.2006.07.024 bioprinting of exocrine pancreas spheroid models for cancer
183. Vandana JJ, Manrique C, Lacko LA, Chen S. Human initiation study. Biofabrication. 2020;12:035001.
pluripotent-stem-cell-derived organoids for drug discovery doi: 10.1088/1758-5090/ab7cb8
and evaluation. Cell Stem Cell. 2023;30:571-591. 195. Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting
doi: 10.1016/j.stem.2023.04.011 strategies to model glioblastoma and the blood-brain barrier.
184. Corsini NS, Knoblich JA. Human organoids: New strategies Adv Mater. 2021;33:e2004776.
and methods for analyzing human development and disease. doi: 10.1002/adma.202004776
Cell. 2022;185:2756-2769. 196. Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch
doi: 10.1016/j.cell.2022.06.051
signaling pathway in metabolic bone diseases. Biochem
185. Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Pharmacol. 2023;207:115377.
Moroni L. Bioprinting: From tissue and organ development doi: 10.1016/j.bcp.2022.115377
Volume 10 Issue 1 (2024) 105 https://doi.org/10.36922/ijb.1037

