Page 113 - IJB-10-1
P. 113

International Journal of Bioprinting                                3D bioprinting for musculoskeletal system




            173. Yang J, Wang L, Zhang W,  et al. Reverse reconstruction   to in vitro models. Chem Rev. 2020;120:10547-10607.
               and bioprinting of bacterial cellulose-based functional total      doi: 10.1021/acs.chemrev.9b00789
               intervertebral disc for therapeutic implantation.  Small.   186. Kurian AG, Singh RK, Patel KD,  Lee J-H, Kim H-W.
               2018;14:1702582.                                   Multifunctional GelMA platforms with nanomaterials for
               doi: 10.1002/smll.201702582
                                                                  advanced tissue therapeutics. Bioact Mater. 2022;8:267-295.
            174. Gullbrand SE, Kim DH, Bonnevie E,  et al. Towards the      doi: 10.1016/j.bioactmat.2021.06.027
               scale up of tissue engineered intervertebral discs for clinical
               application. Acta Biomater. 2018;70:154-164.    187. Kang HW, Lee SJ, Ko IK,  Kengla C, Yoo JJ, Atala A. A
               doi: 10.1016/j.actbio.2018.01.050                  3D bioprinting system to produce human-scale tissue
                                                                  constructs with structural integrity. Nat Biotechnol. 2016;34:
            175. Yang J, Yang X, Wang L, et al. Biomimetic nanofibers can   312-319.
               construct effective tissue-engineered intervertebral discs for      doi: 10.1038/nbt.3413
               therapeutic implantation. Nanoscale. 2017;9:13095.
               doi: 10.1039/c7nr03944a                         188. Kim BS, Ahn M, Cho WW,  Gao G, Jang J, Cho D-W.
                                                                  Engineering  of  diseased  human  skin  equivalent using
            176. Bhunia  BK, Dey S,  Bandyopadhyay A,  Mandal  BB. 3D   3D cell printing for representing pathophysiological
               printing of annulus fibrosus anatomical equivalents   hallmarks of type 2 diabetes in vitro. Biomaterials. 2021;272:
               recapitulating angle-ply architecture for intervertebral disc   120776.
               replacement. Appl Mater Today. 2021;23:101031.      doi: 10.1016/j.biomaterials.2021.120776
               doi: 10.1016/j.apmt.2021.101031
                                                               189. Bin  Y,  Dongzhen  Z,  Xiaoli  C,  et  al.  Modeling  human
            177. Liu Z, Wang H, Yuan Z, et al. High-resolution 3D printing   hypertrophic scars with 3D preformed cellular aggregates
               of angle-ply annulus fibrosus scaffolds for intervertebral disc   bioprinting. Bioact Mater. 2022;10:247-254.
               regeneration. Biofabrication. 2022;15:015015.      doi: 10.1016/j.bioactmat.2021.09.004
               doi: 10.1088/1758-5090/aca71f
                                                               190. Neufeld L, Yeini E, Pozzi S, Satchi-Fainaro R. 3D bioprinted
            178. Hu D, Wu D, Huang L, et al. 3D bioprinting of cell-laden   cancer  models:  From  basic  biology  to  drug  development.
               scaffolds  for  intervertebral  disc  regeneration.  Mater  Lett.   Nat Rev Cancer. 2022;22:679-692.
               2018;223:219-222.                                  doi: 10.1038/s41568-022-00514-w
               doi: 10.1016/j.matlet.2018.03.204
                                                               191. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting
            179. Parker KK, Healy K, Bursac N. Tissue-engineered disease   of tissues/organs for regenerative medicine and in-vitro
               models. Nat Biomed Eng. 2018;2:879-880.            models. Biomaterials. 2022;287:121639.
               doi: 10.1038/s41551-018-0339-2                     doi: 10.1016/j.biomaterials.2022.121639
            180. Moran CJ, Ramesh A, Brama PA,  O’Byrne JM,  O’Brien   192. Han J, Jeon S, Kim MK, Jeong W, Yoo JJ, Kang H-W. In vitro
               FJ, Levingstone TJ. The benefits and limitations of animal   breast  cancer  model  with  patient-specific  morphological
               models for translational research in cartilage repair. J Exp   features for personalized medicine.  Biofabrication.
               Orthop. 2016;3:1.                                  2022;14:034102.
               doi: 10.1186/s40634-015-0037-x                     doi: 10.1088/1758-5090/ac6127
            181. Benam KH, Dauth S, Hassell B, et al. Engineered in vitro   193. Neufeld L, Yeini E, Reisman N,  et al. Microengineered
               disease models. Annu Rev Pathol. 2015;10:195-262.   perfusable 3D-bioprinted glioblastoma model for in
               doi: 10.1146/annurev-pathol-012414-040418          vivo mimicry of tumor microenvironment.  Sci Adv.
            182. Takahashi K, Yamanaka S. Induction of pluripotent stem   2021;7:eabi9119.
               cells from mouse embryonic and adult fibroblast cultures by      doi: 10.1126/sciadv.abi9119
               defined factors. Cell. 2006;126:663-676.        194. Hakobyan D, Médina C, Dusserre N, et al. Laser-assisted 3D
               doi: 10.1016/j.cell.2006.07.024                    bioprinting of exocrine pancreas spheroid models for cancer
            183. Vandana JJ, Manrique C, Lacko LA,  Chen S. Human   initiation study. Biofabrication. 2020;12:035001.
               pluripotent-stem-cell-derived organoids for drug discovery      doi: 10.1088/1758-5090/ab7cb8
               and evaluation. Cell Stem Cell. 2023;30:571-591.   195. Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting
               doi: 10.1016/j.stem.2023.04.011                    strategies to model glioblastoma and the blood-brain barrier.
            184. Corsini NS, Knoblich JA. Human organoids: New strategies   Adv Mater. 2021;33:e2004776.
               and methods for analyzing human development and disease.      doi: 10.1002/adma.202004776
               Cell. 2022;185:2756-2769.                       196. Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch
               doi: 10.1016/j.cell.2022.06.051
                                                                  signaling pathway in metabolic bone diseases.  Biochem
            185. Mota C, Camarero-Espinosa S, Baker MB,  Wieringa P,   Pharmacol. 2023;207:115377.
               Moroni L. Bioprinting: From tissue and organ development      doi: 10.1016/j.bcp.2022.115377



            Volume 10 Issue 1 (2024)                       105                          https://doi.org/10.36922/ijb.1037
   108   109   110   111   112   113   114   115   116   117   118