Page 112 - IJB-10-1
P. 112

International Journal of Bioprinting                                3D bioprinting for musculoskeletal system




            149. Stocco TD, Moreira Silva MC, Corat MAF, AO L. Towards   techniques, and prospects for regeneration.  Biomaterials.
               bioinspired meniscus-regenerative scaffolds: Engineering a   2011;32:7411-7431.
               novel  3D  bioprinted  patient-specific  construct  reinforced      doi: 10.1016/j.biomaterials.2011.06.037
               by biomimetically aligned nanofibers.  Int J Nanomed.   161.  Narayanan LK, Huebner P, Fisher MB,  Spang JT, Starly B,
               2022;17:1111-1124.                                 Shirwaiker RA. 3D-bioprinting of polylactic acid (PLA)
               doi: 10.2147/ijn.S353937
                                                                  nanofiber-alginate hydrogel bioink containing human adipose-
            150. Terpstra ML, Li J, Mensinga A, et al. Bioink with cartilage-  derived stem cells. ACS Biomater Sci Eng. 2016;2:1732-1742.
               derived extracellular matrix microfibers enables spatial      doi: 10.1021/acsbiomaterials.6b00196
               control of vascular capillary formation in bioprinted   162. MacBarb RF, Chen AL, Hu JC, Athanasiou KA. Engineering
               constructs. Biofabrication. 2022;14:034104.        functional  anisotropy  in  fibrocartilage  neotissues.
               doi: 10.1088/1758-5090/ac6282
                                                                  Biomaterials. 2013;34:9980-9989.
            151. Sathish  PB, Gayathri S,  Priyanka  J,  et  al. Tricomposite      doi: 10.1016/j.biomaterials.2013.09.026
               gelatin-carboxymethylcellulose-alginate bioink for direct   163. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and
               and indirect 3D printing of human knee meniscal scaffold.   inflammation. Rheumatology. 2005;44:7-16.
               Int J Biol Macromol. 2022;195:179-189.             doi: 10.1093/rheumatology/keh344
               doi: 10.1016/j.ijbiomac.2021.11.184
                                                               164. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis
            152. Sun Y, Zhang Y, Wu Q,  et al. 3D-bioprinting ready-to-  and nerve growth in osteoarthritis.  Nat Rev Rheumatol.
               implant anisotropic menisci recapitulate healthy meniscus   2012;8:390-398.
               phenotype and prevent secondary joint degeneration.      doi: 10.1038/nrrheum.2012.80
               Theranostics. 2021;11:5160-5173.
               doi: 10.7150/thno.54864                         165. Ashraf S, Wibberley H, Mapp PI, Hill R, Wilson D, Walsh
                                                                  DA. Increased vascular penetration and nerve growth in the
            153. Lan X, Ma Z, Szojka ARA, et al. TEMPO-oxidized cellulose   meniscus: A potential source of pain in osteoarthritis. Ann
               nanofiber-alginate hydrogel as a bioink for human meniscus   Rheum Dis. 2011;70:523-529.
               tissue engineering.  Front Bioeng Biotechnol.  2021;9:      doi: 10.1136/ard.2010.137844
               766399.
               doi: 10.3389/fbioe.2021.766399                  166. Freemont AJ, Watkins A, Le Maitre C,  et al. Nerve
                                                                  growth  factor  expression  and  innervation  of  the  painful
            154. Hao L, Tianyuan Z, Zhen Y,  et al. Biofabrication of cell-  intervertebral disc. J Pathol. 2002;197:286-292.
               free dual drug-releasing biomimetic scaffolds for meniscal      doi: 10.1002/path.1108
               regeneration. Biofabrication. 2021;14:015001.
               doi: 10.1088/1758-5090/ac2cd7                   167. Ohnishi T, Iwasaki N, Sudo H. Causes of and molecular
                                                                  targets for the treatment of intervertebral disc degeneration:
            155. Filardo G, Petretta M, Cavallo C,  et al. Patient-specific   A review. Cells. 2022;11:394.
               meniscus prototype based on 3D bioprinting of human cell-     doi: 10.3390/cells11030394
               laden scaffold. Bone Joint Res. 2019;8:101-106.
               doi: 10.1302/2046-3758.82.Bjr-2018-0134.R1      168.  Peng Y, Qing X, Shu H,  et al. Proper animal experimental
                                                                  designs for preclinical research of biomaterials for intervertebral
            156. Chansoria P, Narayanan LK, Schuchard K,  Shirwaiker   disc regeneration. Biomater Transl. 2021;2:91-142.
               R. Ultrasound-assisted biofabrication and bioprinting of      doi: 10.12336/biomatertransl.2021.02.003
               preferentially aligned three-dimensional cellular constructs.
               Biofabrication. 2019;11:035015.                 169. Feng Y, Egan B, Wang J. Genetic factors in intervertebral
               doi: 10.1088/1758-5090/ab15cf                      disc degeneration. Genes Dis. 2016;3:178-185.
                                                                  doi: 10.1016/j.gendis.2016.04.005
            157. Ali AM, Newman SDS, Hooper PA, Davies CM, Cobb JP.
               The effect of implant position on bone strain following lateral   170. Wu D, Li G, Zhou X,  Zhang W. Repair strategies and
               unicompartmental  knee  arthroplasty: A  biomechanical   bioactive functional  materials  for  intervertebral disc.  Adv
               model using digital image correlation. Bone Joint Res. 2017;6:   Funct Mater. 2022;32:2209471.
               522-529.                                           doi: 10.1002/adfm.202209471
               doi: 10.1302/2046-3758.68.Bjr-2017-0067.R1      171.  van Uden S, Silva-Correia J, Oliveira JM,  Reis RL. Current
            158. Badylak SF. The extracellular matrix as a biologic scaffold   strategies for treatment of intervertebral disc degeneration:
               material. Biomaterials. 2007;28:3587-3593.         Substitution and regeneration possibilities.  Biomater Res.
               doi: 10.1016/j.biomaterials.2007.04.043            2017;21:22.
                                                                  doi: 10.1186/s40824-017-0106-6
            159. Frantz C, Stewart KM, Weaver VM. The extracellular matrix
               at a glance. J Cell Sci. 2010;123:4195-4200.    172. JT M, AH M, JA C,  et al. Translation of an engineered
               doi: 10.1242/jcs.023820                            nanofibrous disc-like angle-ply structure for intervertebral
                                                                  disc replacement in a small animal model. Acta Biomater.
            160. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus:   2014;10:2473-2481.
               Structure-function,  pathophysiology,  current  repair
                                                                  doi: 10.1016/j.actbio.2014.02.024
            Volume 10 Issue 1 (2024)                       104                          https://doi.org/10.36922/ijb.1037
   107   108   109   110   111   112   113   114   115   116   117