Page 112 - IJB-10-1
P. 112
International Journal of Bioprinting 3D bioprinting for musculoskeletal system
149. Stocco TD, Moreira Silva MC, Corat MAF, AO L. Towards techniques, and prospects for regeneration. Biomaterials.
bioinspired meniscus-regenerative scaffolds: Engineering a 2011;32:7411-7431.
novel 3D bioprinted patient-specific construct reinforced doi: 10.1016/j.biomaterials.2011.06.037
by biomimetically aligned nanofibers. Int J Nanomed. 161. Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B,
2022;17:1111-1124. Shirwaiker RA. 3D-bioprinting of polylactic acid (PLA)
doi: 10.2147/ijn.S353937
nanofiber-alginate hydrogel bioink containing human adipose-
150. Terpstra ML, Li J, Mensinga A, et al. Bioink with cartilage- derived stem cells. ACS Biomater Sci Eng. 2016;2:1732-1742.
derived extracellular matrix microfibers enables spatial doi: 10.1021/acsbiomaterials.6b00196
control of vascular capillary formation in bioprinted 162. MacBarb RF, Chen AL, Hu JC, Athanasiou KA. Engineering
constructs. Biofabrication. 2022;14:034104. functional anisotropy in fibrocartilage neotissues.
doi: 10.1088/1758-5090/ac6282
Biomaterials. 2013;34:9980-9989.
151. Sathish PB, Gayathri S, Priyanka J, et al. Tricomposite doi: 10.1016/j.biomaterials.2013.09.026
gelatin-carboxymethylcellulose-alginate bioink for direct 163. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and
and indirect 3D printing of human knee meniscal scaffold. inflammation. Rheumatology. 2005;44:7-16.
Int J Biol Macromol. 2022;195:179-189. doi: 10.1093/rheumatology/keh344
doi: 10.1016/j.ijbiomac.2021.11.184
164. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis
152. Sun Y, Zhang Y, Wu Q, et al. 3D-bioprinting ready-to- and nerve growth in osteoarthritis. Nat Rev Rheumatol.
implant anisotropic menisci recapitulate healthy meniscus 2012;8:390-398.
phenotype and prevent secondary joint degeneration. doi: 10.1038/nrrheum.2012.80
Theranostics. 2021;11:5160-5173.
doi: 10.7150/thno.54864 165. Ashraf S, Wibberley H, Mapp PI, Hill R, Wilson D, Walsh
DA. Increased vascular penetration and nerve growth in the
153. Lan X, Ma Z, Szojka ARA, et al. TEMPO-oxidized cellulose meniscus: A potential source of pain in osteoarthritis. Ann
nanofiber-alginate hydrogel as a bioink for human meniscus Rheum Dis. 2011;70:523-529.
tissue engineering. Front Bioeng Biotechnol. 2021;9: doi: 10.1136/ard.2010.137844
766399.
doi: 10.3389/fbioe.2021.766399 166. Freemont AJ, Watkins A, Le Maitre C, et al. Nerve
growth factor expression and innervation of the painful
154. Hao L, Tianyuan Z, Zhen Y, et al. Biofabrication of cell- intervertebral disc. J Pathol. 2002;197:286-292.
free dual drug-releasing biomimetic scaffolds for meniscal doi: 10.1002/path.1108
regeneration. Biofabrication. 2021;14:015001.
doi: 10.1088/1758-5090/ac2cd7 167. Ohnishi T, Iwasaki N, Sudo H. Causes of and molecular
targets for the treatment of intervertebral disc degeneration:
155. Filardo G, Petretta M, Cavallo C, et al. Patient-specific A review. Cells. 2022;11:394.
meniscus prototype based on 3D bioprinting of human cell- doi: 10.3390/cells11030394
laden scaffold. Bone Joint Res. 2019;8:101-106.
doi: 10.1302/2046-3758.82.Bjr-2018-0134.R1 168. Peng Y, Qing X, Shu H, et al. Proper animal experimental
designs for preclinical research of biomaterials for intervertebral
156. Chansoria P, Narayanan LK, Schuchard K, Shirwaiker disc regeneration. Biomater Transl. 2021;2:91-142.
R. Ultrasound-assisted biofabrication and bioprinting of doi: 10.12336/biomatertransl.2021.02.003
preferentially aligned three-dimensional cellular constructs.
Biofabrication. 2019;11:035015. 169. Feng Y, Egan B, Wang J. Genetic factors in intervertebral
doi: 10.1088/1758-5090/ab15cf disc degeneration. Genes Dis. 2016;3:178-185.
doi: 10.1016/j.gendis.2016.04.005
157. Ali AM, Newman SDS, Hooper PA, Davies CM, Cobb JP.
The effect of implant position on bone strain following lateral 170. Wu D, Li G, Zhou X, Zhang W. Repair strategies and
unicompartmental knee arthroplasty: A biomechanical bioactive functional materials for intervertebral disc. Adv
model using digital image correlation. Bone Joint Res. 2017;6: Funct Mater. 2022;32:2209471.
522-529. doi: 10.1002/adfm.202209471
doi: 10.1302/2046-3758.68.Bjr-2017-0067.R1 171. van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current
158. Badylak SF. The extracellular matrix as a biologic scaffold strategies for treatment of intervertebral disc degeneration:
material. Biomaterials. 2007;28:3587-3593. Substitution and regeneration possibilities. Biomater Res.
doi: 10.1016/j.biomaterials.2007.04.043 2017;21:22.
doi: 10.1186/s40824-017-0106-6
159. Frantz C, Stewart KM, Weaver VM. The extracellular matrix
at a glance. J Cell Sci. 2010;123:4195-4200. 172. JT M, AH M, JA C, et al. Translation of an engineered
doi: 10.1242/jcs.023820 nanofibrous disc-like angle-ply structure for intervertebral
disc replacement in a small animal model. Acta Biomater.
160. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: 2014;10:2473-2481.
Structure-function, pathophysiology, current repair
doi: 10.1016/j.actbio.2014.02.024
Volume 10 Issue 1 (2024) 104 https://doi.org/10.36922/ijb.1037

