Page 346 - IJB-10-1
P. 346

International Journal of Bioprinting                            3D-printed bone scaffolds and biofilm formation




            43.  Kim Y, Son KH, Lee JW. Auxetic structures for tissue   49.  Zheng S, Bawazir M, Dhall A, et al. Implication of surface
               engineering scaffolds and biomedical devices.  Materials   properties, bacterial motility, and hydrodynamic conditions
               (Basel). 2021;14(22).                              on bacterial surface sensing and their initial adhesion. Front
               doi: 10.3390/ma14226821                            Bioeng Biotechnol. 2021;9:643722.
            44.  Hemmatian T, Lee H, Kim J. Bacteria adhesion of textiles      doi: 10.3389/fbioe.2021.643722
               influenced by wettability and pore characteristics of fibrous   50.  Dong Z, Zhao X. Application of TPMS structure in bone
               substrates. Polymers. 2021;13(2):223.              regeneration. Eng Reg. 2021;2:154-162.
               doi: 10.3390/polym13020223                         doi: 10.1016/j.engreg.2021.09.004
            45.  Torres-Sanchez C, Al Mushref FRA, Norrito M, et al. The   51.  Abbasi N, Hamlet S, Love RM, Nguyen N-T. Porous scaffolds
               effect of pore size and porosity on mechanical properties   for bone regeneration. J Sci Adv Mater Devices. 2020;5(1):1-9.
               and biological response of porous titanium scaffolds. Mater      doi: 10.1016/j.jsamd.2020.01.007
               Sci Eng C Mater Biol Appl. 2017;77:219-228.
               doi: 10.1016/j.msec.2017.03.249                 52.  Nam JH, Lee SY, Khan G, Park ES. Validation of the optimal
                                                                  scaffold pore size of nasal implants using the 3-dimensional
            46.  Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, et
               al. Scaffolds in the microbial resistant era: Fabrication,   culture  technique.  Arch  Plast  Surg.  2020;47(4):
               materials, properties and tissue engineering applications.   310-316.
               Mater Today Bio. 2022;16:100412.                   doi: 10.5999/aps.2020.00213
               doi: 10.1016/j.mtbio.2022.100412                53.  Yao Y-t, Yang Y, Ye Q, et al. Effects of pore size and porosity
            47.  Golhin AP, Tonello R, Frisvad JR, Grammatikos S, Strandlie A.   on cytocompatibility and osteogenic differentiation
               Surface roughness of as-printed polymers: A comprehensive   of porous titanium.  J Mater Sci Mater Med. 2021;
               review. Int J Adv Manuf Tech. 2023;127(3):987-1043.   32(6):72.
               doi: 10.1007/s00170-023-11566-z                    doi: 10.1007/s10856-021-06548-0
            48.  Dezaki ML, Ariffin MKAM, Serjouei A, et al. Influence of   54.  Zhang J, Chen X, Sun Y, et al. Design of a biomimetic graded
               infill patterns generated by CAD and FDM 3D printer on   TPMS scaffold with quantitatively adjustable pore size.
               surface roughness and tensile strength properties. App Sci.   Mater Des. 2022;218:110665.
               2021;11(16):7272.                                  doi: 10.1016/j.matdes.2022.110665










































            Volume 10 Issue 1 (2024)                       338                          https://doi.org/10.36922/ijb.1768
   341   342   343   344   345   346   347   348   349   350   351