Page 345 - IJB-10-1
P. 345

International Journal of Bioprinting                            3D-printed bone scaffolds and biofilm formation




               doi: 10.1155/2019/3429527                       31.  Chen Z, Xie YM, Wu X, et al. On hybrid cellular materials
                                                                  based on triply periodic minimal surfaces  with extreme
            19.  Milovanović  J, Stojković M, Trifunović M,  Vitković N.
               Review of bone scaffold design concepts and design   mechanical properties. Mater Des. 2019;183:108109.
               methods. Facta Universitatis, Series: Mechanical Engineering.       doi: 10.1016/j.matdes.2019.108109
               2023;21(1):151-173.                             32.  McCreight C. nTopology: What equations are used to create
               doi: 1022190/FUME200328038M.04/10/2023             the TPMS types? Accessed August 19, 2023.
            20.  Liu F, Mishbak H, Bartolo P. Hybrid polycaprolactone/     https://support.ntop.com/hc/en-us/articles/360053267814-
               hydrogel scaffold fabrication and in-process plasma   What-equations-are-used-to-create-the-TPMS-types-
               treatment using PABS. Int J Bioprint. 2019;5(1):174.   33.  Ren X, Das R, Tran P, Ngo TD, Xie YM. Auxetic
               doi: 10.18063/ijb.v5i1.174                         metamaterials and structures: A review. Smart Mater Struct.
            21.  Huang B, Caetano G, Vyas C, et al. Polymer-ceramic   2018;27(2):023001.
               composite scaffolds: The effect of hydroxyapatite and β-tri-     doi: 10.1088/1361-665X/aaa61c
               calcium phosphate. Materials (Basel). 2018;11(1):129-142.   34.  Warner JJ, Gillies AR, Hwang HH, et al. 3D-printed
               doi: 10.3390/ma11010129                            biomaterials with regional auxetic properties. J Mech Behav
            22.  Bayart M, Charlon S, Soulestin J. Fused filament fabrication   Biomed Mater. 2017;76:145-152.
               of scaffolds for tissue engineering; how realistic is shape-     doi: 10.1016/j.jmbbm.2017.05.016
               memory? A review. Polymers. 2021;217:123440.    35.  Kapnisi M, Mansfield C, Marijon C, et al. Auxetic cardiac
               doi: 10.1016/j.polymer.2021.123440                 patches with tunable mechanical and conductive properties
            23.  Biswal T. Biopolymers for tissue engineering applications: A   toward treating myocardial infarction.  Adv Funct Mater.
               review. Mater Tod Proc. 2021;41:397-402.           2018;28(21):1800618.
               doi: 10.1016/j.matpr.2020.09.628                   doi: 10.1002/adfm.201800618
            24.  Veeman D, Sai MS, Sureshkumar P, et al. Additive   36.  Naveed N. Investigating the material properties and
               manufacturing  of  biopolymers  for  tissue  engineering   microstructural  changes  of  fused  filament  fabricated  PLA
               and regenerative medicine: An overview, potential   and tough-PLA parts. Polymers. 2021;13(9):1487.
               applications, advancements, and trends. Int J Polymer Sci.      doi: 10.3390/polym13091487
               2021;2021:4907027.                              37.  Priya G, Anitha R, Akila R, Narendra Kumar U, Manjubala
               doi: 10.1155/2021/4907027                          I. Biofilm formation by S. aureus on composite scaffolds –
            25.  Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review   A qualitative and quantitative in vitro analysis. Mater Today
               of additive manufactured tissue engineering scaffolds:   Proc. 2019;15:217-223.
               Relationship between geometry and performance.  Burns      doi: 10.1016/j.matpr.2019.04.193
               Trauma. 2018;6(1):19.                           38.  Aldarhami A, Bazaid AS, Qanash H, et al. Effects of repeated
               doi: 10.1186/s41038-018-0121-4                     in-vitro exposure to Saudi  honey on bacterial resistance
            26.  O’Brien FJ. Biomaterials & scaffolds for tissue engineering.   to antibiotics and biofilm formation.  Infect Drug Resist.
               Mater Today. 2011;14(3):88-95.                     2023;16:4273-4283.
               doi: 10.1016/S1369-7021(11)70058-X                 doi: 10.2147/idr.S410159
            27.  Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based   39.  Petrachi T, Resca E, Piccinno MS, et al. An alternative approach
               scaffolds with antibacterial function for bone tissue   to investigate biofilm in medical devices: A feasibility study.
               engineering: A review. Bioact Mater. 2022;18:383-398.   Int J Environ Res Public Health. 2017;14(12):1587.
               doi: 10.1016/j.bioactmat.2022.02.010               doi: 10.3390/ijerph14121587
            28.  Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial   40.  Amin Yavari S, Croes M, Akhavan B, et al. Layer by
               biofilms: Development, dispersal, and therapeutic strategies   layer coating for bio-functionalization of additively
               in the dawn of the postantibiotic era.  Cold Spring Harb   manufactured meta-biomaterials.  Additiv Manuf. 2020;32:
               Perspect Med. 2013;3(4):a010306.                   100991.
               doi: 10.1101/cshperspect.a010306                   doi: 10.1016/j.addma.2019.100991
            29.  Yuan J, Wang B, Han C, et al. Nanosized-Ag-doped porous   41.  Poltue T, Karuna C,  Khrueaduangkham S, Seehanam S,
               β-tricalcium phosphate for biological applications. Mater Sci   Promoppatum P. Design exploration of 3D-printed triply
               Eng C Mater Biol Appl. 2020;114:111037.            periodic minimal surface scaffolds for bone implants.
               doi: 10.1016/j.msec.2020.111037                    Int J Mech Sci. 2021;211:106762.
                                                                  doi: 10.1016/j.ijmecsci.2021.106762
            30.  Zhu  T,  Zhu  M,  Zhu  Y.  Fabrication  of  forsterite  scaffolds
               with  photothermal-induced  antibacterial  activity  by  3D   42.  Ali  D.  Effect  of  scaffold  architecture  on  cell  seeding
               printing and polymer-derived ceramics strategy. Ceram Int.   efficiency: A discrete phase model CFD analysis.  Comput
               2020;46(9):13607-13614.                            Biol Med. 2019;109:62-69.
               doi: 10.1016/j.ceramint.2020.02.146                doi: 10.1016/j.compbiomed.2019.04.025

            Volume 10 Issue 1 (2024)                       337                          https://doi.org/10.36922/ijb.1768
   340   341   342   343   344   345   346   347   348   349   350