Page 345 - IJB-10-1
P. 345
International Journal of Bioprinting 3D-printed bone scaffolds and biofilm formation
doi: 10.1155/2019/3429527 31. Chen Z, Xie YM, Wu X, et al. On hybrid cellular materials
based on triply periodic minimal surfaces with extreme
19. Milovanović J, Stojković M, Trifunović M, Vitković N.
Review of bone scaffold design concepts and design mechanical properties. Mater Des. 2019;183:108109.
methods. Facta Universitatis, Series: Mechanical Engineering. doi: 10.1016/j.matdes.2019.108109
2023;21(1):151-173. 32. McCreight C. nTopology: What equations are used to create
doi: 1022190/FUME200328038M.04/10/2023 the TPMS types? Accessed August 19, 2023.
20. Liu F, Mishbak H, Bartolo P. Hybrid polycaprolactone/ https://support.ntop.com/hc/en-us/articles/360053267814-
hydrogel scaffold fabrication and in-process plasma What-equations-are-used-to-create-the-TPMS-types-
treatment using PABS. Int J Bioprint. 2019;5(1):174. 33. Ren X, Das R, Tran P, Ngo TD, Xie YM. Auxetic
doi: 10.18063/ijb.v5i1.174 metamaterials and structures: A review. Smart Mater Struct.
21. Huang B, Caetano G, Vyas C, et al. Polymer-ceramic 2018;27(2):023001.
composite scaffolds: The effect of hydroxyapatite and β-tri- doi: 10.1088/1361-665X/aaa61c
calcium phosphate. Materials (Basel). 2018;11(1):129-142. 34. Warner JJ, Gillies AR, Hwang HH, et al. 3D-printed
doi: 10.3390/ma11010129 biomaterials with regional auxetic properties. J Mech Behav
22. Bayart M, Charlon S, Soulestin J. Fused filament fabrication Biomed Mater. 2017;76:145-152.
of scaffolds for tissue engineering; how realistic is shape- doi: 10.1016/j.jmbbm.2017.05.016
memory? A review. Polymers. 2021;217:123440. 35. Kapnisi M, Mansfield C, Marijon C, et al. Auxetic cardiac
doi: 10.1016/j.polymer.2021.123440 patches with tunable mechanical and conductive properties
23. Biswal T. Biopolymers for tissue engineering applications: A toward treating myocardial infarction. Adv Funct Mater.
review. Mater Tod Proc. 2021;41:397-402. 2018;28(21):1800618.
doi: 10.1016/j.matpr.2020.09.628 doi: 10.1002/adfm.201800618
24. Veeman D, Sai MS, Sureshkumar P, et al. Additive 36. Naveed N. Investigating the material properties and
manufacturing of biopolymers for tissue engineering microstructural changes of fused filament fabricated PLA
and regenerative medicine: An overview, potential and tough-PLA parts. Polymers. 2021;13(9):1487.
applications, advancements, and trends. Int J Polymer Sci. doi: 10.3390/polym13091487
2021;2021:4907027. 37. Priya G, Anitha R, Akila R, Narendra Kumar U, Manjubala
doi: 10.1155/2021/4907027 I. Biofilm formation by S. aureus on composite scaffolds –
25. Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review A qualitative and quantitative in vitro analysis. Mater Today
of additive manufactured tissue engineering scaffolds: Proc. 2019;15:217-223.
Relationship between geometry and performance. Burns doi: 10.1016/j.matpr.2019.04.193
Trauma. 2018;6(1):19. 38. Aldarhami A, Bazaid AS, Qanash H, et al. Effects of repeated
doi: 10.1186/s41038-018-0121-4 in-vitro exposure to Saudi honey on bacterial resistance
26. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. to antibiotics and biofilm formation. Infect Drug Resist.
Mater Today. 2011;14(3):88-95. 2023;16:4273-4283.
doi: 10.1016/S1369-7021(11)70058-X doi: 10.2147/idr.S410159
27. Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based 39. Petrachi T, Resca E, Piccinno MS, et al. An alternative approach
scaffolds with antibacterial function for bone tissue to investigate biofilm in medical devices: A feasibility study.
engineering: A review. Bioact Mater. 2022;18:383-398. Int J Environ Res Public Health. 2017;14(12):1587.
doi: 10.1016/j.bioactmat.2022.02.010 doi: 10.3390/ijerph14121587
28. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial 40. Amin Yavari S, Croes M, Akhavan B, et al. Layer by
biofilms: Development, dispersal, and therapeutic strategies layer coating for bio-functionalization of additively
in the dawn of the postantibiotic era. Cold Spring Harb manufactured meta-biomaterials. Additiv Manuf. 2020;32:
Perspect Med. 2013;3(4):a010306. 100991.
doi: 10.1101/cshperspect.a010306 doi: 10.1016/j.addma.2019.100991
29. Yuan J, Wang B, Han C, et al. Nanosized-Ag-doped porous 41. Poltue T, Karuna C, Khrueaduangkham S, Seehanam S,
β-tricalcium phosphate for biological applications. Mater Sci Promoppatum P. Design exploration of 3D-printed triply
Eng C Mater Biol Appl. 2020;114:111037. periodic minimal surface scaffolds for bone implants.
doi: 10.1016/j.msec.2020.111037 Int J Mech Sci. 2021;211:106762.
doi: 10.1016/j.ijmecsci.2021.106762
30. Zhu T, Zhu M, Zhu Y. Fabrication of forsterite scaffolds
with photothermal-induced antibacterial activity by 3D 42. Ali D. Effect of scaffold architecture on cell seeding
printing and polymer-derived ceramics strategy. Ceram Int. efficiency: A discrete phase model CFD analysis. Comput
2020;46(9):13607-13614. Biol Med. 2019;109:62-69.
doi: 10.1016/j.ceramint.2020.02.146 doi: 10.1016/j.compbiomed.2019.04.025
Volume 10 Issue 1 (2024) 337 https://doi.org/10.36922/ijb.1768

