Page 413 - IJB-10-1
P. 413

International Journal of Bioprinting                              Droplets prepared by air-focused bioprinting




            10.  Wu L, Guo Z, Liu W. Surface behaviors of droplet   antimicrobial resistance analysis of bacteria producing
               manipulation in microfluidics devices. Adv Colloid Interface   β-lactamases. Chin Chem Lett. 2023;34(5):107790.
               Sci. 2022;308:102770.                              doi: 10.1016/j.cclet.2022.107790
               doi: 10.1016/j.cis.2022.102770
                                                               22.  Nam J, Lim H, Kim D,  Jung H, Shin S. Continuous
            11.  Sun X, Wu Q, Li W, et al. Facile fabrication of drug-loaded   separation of microparticles in a microfluidic channel via
               PEGDA microcapsules  for  drug  evaluation using droplet-  the elasto-inertial effect of non-Newtonian fluid. Lab Chip.
               based microchip. Chin Chem Lett. 2022;33(5):2697-2700.  2012;12(7):1347-1354.
               doi: 10.1016/j.cclet.2021.08.122                   doi: 10.1039/C2LC21304D
            12.  Kim JH, Jeon TY, Choi TM,  Shim TS, Kim S-H, Yang   23.  Sun Z, Yang C, Wang F, et al. Biocompatible and pH-responsive
               S-M. Droplet microfluidics for producing functional   colloidal surfactants with tunable shape for controlled interfacial
               microparticles. Langmuir. 2014;30(6):1473-1488.    curvature. Angew Chem Int Ed. 2020;59(24):9365-9369.
               doi: 10.1021/la403220p                             doi: 10.1002/anie.202001588
            13.  Liu W-Y, Ju X-J, Pu X-Q,  et al. Functional capsules   24.  Zhu J, Cai L-H. All-aqueous printing of viscoelastic droplets
               encapsulating  molecular-recognizable  nanogels  for  in yield-stress fluids. Acta Biomater. 2022;165(15):60-71.
               facile removal of organic micro-pollutants from water.      doi: 10.1016/j.actbio.2022.09.031
               Engineering. 2021;7(5):636-646.                 25.  Zhang M, Wangjin Y, Zhou H, et al. Fly ash and zero-
               doi: 10.1016/j.eng.2021.02.007                     valent iron-based in situ advanced anaerobic digestion
            14.  Shang L, Cheng Y, Wang J, et al. Double emulsions from   with emphasis on the removal of antibiotics and antibiotic
               a capillary array injection microfluidic device.  Lab  Chip.   resistance genes from sewage sludge. Waste Dispos Sustain
               2014;14(18):3489-3493.                             Energy. 2022;4:17-28.
               doi: 10.1039/C4LC00698D                            doi: 10.1007/s42768-021-00089-6
            15.  Zhai X, Pan M, Shi P,  Zhao P, Chen D. One-step high-  26.  Zhang H, Liu D, Shahbazi M-A,  et al. Fabrication of a
               throughput controlled preparation of biocompatible water/  multifunctional nano-in-micro drug delivery platform by
               water microcapsules with triggered release.  Chem J Chin   microfluidic templated encapsulation of porous silicon in
               Univ. 2022;43(12):10.                              polymer matrix. Adv Mater. 2014;26(26):4497-4503.
               doi: 10.7503/cjcu20220460                          doi: 10.1002/adma.201400953
            16.  Trantidou T, Elani Y, Parsons E, Ces O. Hydrophilic surface   27.  Liu Y, Yang G, Baby T, et al. Stable polymer nanoparticles with
               modification of PDMS for droplet microfluidics using a   exceptionally high drug loading by sequential nanoprecipitation.
               simple, quick, and robust method via PVA deposition.   Angew Chem Int Ed. 2020;59(12):4720-4728.
               Microsyst Nanoeng. 2017;3(1):16091.                doi: 10.1002/anie.201913539
               doi: 10.1038/micronano.2016.91                  28.  Chen Q, Utech S, Chen D, Prodanovic R, Lin J-M, Weitz
            17.  Chen D, Amstad E, Zhao C-X,  et al. Biocompatible   DA. Controlled assembly of heterotypic cells in a core–shell
               amphiphilic hydrogel–solid dimer particles as colloidal   scaffold: organ in a droplet. Lab Chip. 2016;16(8):1346-1349.
               surfactants. ACS Nano. 2017;11(12):11978-11985.     doi: 10.1039/C6LC00231E
               doi: 10.1021/acsnano.7b03110                    29.  Zhu J, He Y, Kong L, et al. Digital assembly of spherical viscoelastic
            18.  Choi C-H, Lee H, Weitz DA. Rapid patterning of PDMS   bio-ink particles. Adv Funct Mater. 2022;32(6):2109004.
               microfluidic device wettability using syringe-vacuum-     doi: 10.1002/adfm.202109004
               induced segmented flow in nonplanar geometry. ACS Appl   30.  Chae S, Ha D-H, Lee H. 3D bioprinting strategy for engineering
               Mater Interfaces. 2018;10(4):3170-3174.            vascularized tissue models. Int J Bioprint. 2023;9(5):15-33.
               doi: 10.1021/acsami.7b17132                        doi: 10.18063/ijb.748
            19.  Shah RK, Shum HC, Rowat AC, et al. Designer emulsions   31.  Foresti  D,  Kroll  KT,  Amissah  R,  et  al.  Acoustophoretic
               using microfluidics. Mater Today. 2008;11(4):18-27.  printing. Sci Adv. 2018;4(8):eaat1659.
               doi: 10.1016/S1369-7021(08)70053-1                 doi: 10.1126/sciadv.aat1659
            20.  Chen L, Xiao Y, Zhang Z,  et al. Porous ultrathin-shell   32.  Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of
               microcapsules designed by microfluidics for selective   single-crystal films. Nature. 2011;475(7356):364-367.
               permeation and stimuli-triggered release.  Front Chem Sci   doi: 10.1038/nature10313
               Eng. 2022;16(11):1643-1650.
               doi: 10.1007/s11705-022-2201-z                  33.  Reiser A, Lindén M, Rohner P,  et al. Multi-metal
                                                                  electrohydrodynamic redox 3D printing at the submicron
            21.  Su Z, Hu W, Ye L,  Gao Dan, Lin J-M. An integrated   scale. Nat Commun. 2019;10(1):1853.
               microfluidic chip-mass spectrometry system for rapid      doi: 10.1038/s41467-019-09827-1





            Volume 10 Issue 1 (2024)                       405                          https://doi.org/10.36922/ijb.1102
   408   409   410   411   412   413   414   415   416   417   418