Page 423 - IJB-10-1
P. 423
International Journal of Bioprinting Osteogenic differentiation of hMSCs by PBF-LB
18. Matsugaki A, Fujiwara N, Nakano T. Continuous cyclic stretch 28. Ramirez-San Juan GR, Gardel PW, Oakes ML. Contact
induces osteoblast alignment and formation of anisotropic guidance requires spatial control of leading-edge protrusion.
collagen fiber matrix. Acta Biomater. 2013;9(7):7227-7235. Mol Biol Cell. 2017;28(8):1043-1053.
doi: 10.1016/j.actbio.2013.03.015
29. Bade ND, Kamien RD, Assoian RK, et al. Curvature and Rho
19. Ozasa R, Matsugaki A, Matsuzaka T, Ishimoto T, Yun H-S, activation differentially control the alignment of cells and
Nakano T. Superior alignment of human iPSC-osteoblasts stress fibers. Sci Adv. 2017;3(9):e1700150.
associated with focal adhesion formation stimulated by doi: 10.1126/sciadv.1700150
oriented collagen scaffold. Int J Mol Sci. 2021;22(12):1-11. 30. Reynolds MJ, Hachicho C, Carl AG, Gong R, Alushin GM.
doi: 10.3390/ijms22126232
Bending forces and nucleotide state jointly regulate F-actin
20. Nakano T, Kaibara K, Ishimoto T, Tabata Y, Umakoshi Y. structure. Nature. 2022;611(7935):380-386.
Biological apatite (BAp) crystallographic orientation and doi: 10.1038/s41586-022-05366-w
texture as a new index for assessing the microstructure and 31. Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal
function of bone regenerated by tissue engineering. Bone. stem cell differentiation. J Anat. 2015;227(6):717-731.
2012;51(4):741-747. doi: 10.1111/joa.12243
doi: 10.1016/j.bone.2012.07.003
32. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen
21. Nakano T, Kaibara K, Tabata Y, et al. Unique alignment and CS. Cell shape, cytoskeletal tension, and RhoA regulate stem
texture of biological apatite crystallites in typical calcified cell lineage commitment. Dev Cell. 2004;6(4):483-495.
tissues analyzed by microbeam X-ray diffractometer system. doi: 10.1016/s1534-5807(04)00075-9
Bone. 2002;31(4):479-487.
doi: 10.1016/s8756-3282(02)00850-5 33. Pajerowski JD, Dahl KN, Zhong FL, et al. Physical plasticity
of the nucleus in stem cell differentiation. Proc Natl Acad Sci
22. Ishimoto T, Nakano T, Umakoshi Y, Yamamoto M, Tabata USA. 2007;104(40):15619-15624.
Y. Degree of biological apatite c-axis orientation rather doi: 10.1073/pnas.0702576104
than bone mineral density controls mechanical function in
bone regenerated using recombinant bone morphogenetic 34. Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A
protein-2. J Bone Miner Res. 2013;28(5):1170-1179. scales with tissue stiffness and enhances matrix-directed
doi: 10.1002/jbmr.1825 differentiation. Science. 2013;341(6149):1240104.
doi: 10.1126/science.1240104
23. Nakanishi Y, Matsugaki A, Kawahara K, Ninomiya T,
Sawada H, Nakano T. Unique arrangement of bone 35. Gokcekaya O, Ishimoto T, Nishikawa Y, et al. Novel single
matrix orthogonal to osteoblast alignment controlled by crystalline-like non-equiatomic TiZrHfNbTaMo bio-high
Tspan11-mediated focal adhesion assembly. Biomaterials. entropy alloy (BioHEA) developed by laser powder bed
2019;209:103-110. fusion. Mater Res Lett. 2023;11(4):274-280.
doi: 10.1016/j.biomaterials.2019.04.016 doi: 10.1080/21663831.2022.2147406
24. Ishimoto T, Kobayashi Y, Takahata M, et al. Outstanding 36. Warnke PH, Douglas T, Wollny P, et al. Rapid prototyping:
in vivo mechanical integrity of additively manufactured Porous titanium alloy scaffolds produced by selective
spinal cages with a novel “honeycomb tree structure” laser melting for bone tissue engineering. Tissue Eng C.
design via guiding bone matrix orientation. 2009;15(2):115-124.
Spine J. 2022;22(10):1742-1757. doi: 10.1089/ten.tec.2008.0288
doi: 10.1016/j.spinee.2022.05.006 37. Hrabe NW, Heinl P, Bordia RK, Körner Carolin, Fernandes RJ.
25. Matsugaki A, Ito M, Kobayashi Y, et al. Innovative design Maintenance of a bone collagen phenotype by osteoblast-like
of bone quality-targeted intervertebral spacer: Accelerated cells in 3D periodic porous titanium (Ti-6Al-4 V) structures
functional fusion guiding oriented collagen/apatite fabricated by selective electron beam melting. Connect Tissue
microstructure without autologous bone graft. Spine J. Res. 2013;54(6):351-360.
2022;23(4):609-620. doi: 10.3109/03008207.2013.822864
doi: 10.1016/j.spinee.2022.12.011 38. Wysocki B, Idaszek J, Zdunek J, et al. The influence of
26. Kimura Y, Matsugaki A, Sekita A, Nakano T. Alteration of selective laser melting (SLM) process parameters on in-vitro
osteoblast arrangement via direct attack by cancer cells: New cell response. Int J Mol Sci. 2018;19(6):1619.
insights into bone metastasis. Sci Rep. 2017;7(1):1-11. doi: 10.3390/ijms19061619
doi: 10.1038/srep44824 39. Weißmann V, Drescher P, Seitz H, et al. Effects of build
27. Leclech C, Villard C. Cellular and subcellular contact orientation on surface morphology and bone cell activity
guidance on microfabricated substrates. Front Bioeng of additively manufactured Ti6Al4V specimens. Materials.
Biotechnol. 2020;8:551505. 2018;11(6):915.
doi: 10.3389/fbioe.2020.551505 doi: 10.3390/ma11060915
Volume 10 Issue 1 (2024) 415 https://doi.org/10.18063/ijb.1425

