Page 81 - IJB-10-1
P. 81
International Journal of Bioprinting Microfluidic-assisted 3D bioprinting
gradients of GelMA hydrogels using a 3D printed 193. Sharma R, Smits IPM, De La Vega L, Lee C, Willerth SM. 3D
micromixer. Macromol Biosci. 2020;20(7):e2000107. bioprinting pluripotent stem cell derived neural tissues using
doi: 10.1002/mabi.202000107 a novel fibrin bioink containing drug releasing microspheres.
183. Kuzucu M, Vera G, Beaumont M, et al. Extrusion-based Front Bioeng Biotechnol. 2020;8(February):1-12.
3D bioprinting of gradients of stiff ness, cell density, and doi: 10.3389/fbioe.2020.00057
immobilized peptide using thermogelling hydrogels. ACS 194. Sharma R, Kirsch R, Valente KP, Perez MR, Willerth
Biomater Sci Eng. 2021;7:2192-2197. SM. Physical and mechanical characterization of fibrin-
doi: 10.1021/acsbiomaterials.1c00183 based bioprinted constructs containing drug-releasing
184. Attalla R, Puersten E, Jain N, Selvaganapathy PR. 3D microspheres for neural tissue engineering applications.
bioprinting of heterogeneous bi- and tri-layered hollow Processes. 2021;9(7):1205.
channels within gel scaffolds using scalable multi- doi: 10.3390/pr9071205
axial microfluidic extrusion nozzle. Biofabrication. 195. Dickman CTD, Russo V, Thain K, et al. Functional
2019;11(1):015012. characterization of 3D contractile smooth muscle tissues
doi: 10.1088/1758-5090/aaf7c7 generated using a unique microfluidic 3D bioprinting
185. Beyer ST, Bsoul A, Ahmadi A. 3D alginate constructs for technology. FASEB J, 2020;34(1):1652-1664.
tissue engineering printed using a coaxial flow focusing doi: 10.1096/fj.201901063RR
microfluidic device. In: 2013 Transducers & Eurosensors 196. Addario G, Djudjaj S, Farè S, Boor P, Moroni L, Mota C.
XXVII: The 17th International Conference on Solid-State Microfluidic bioprinting towards a renal in vitro model.
Sensors, Actuators and Microsystems (TRANSDUCERS & Bioprinting. 2020;20(July):e00108.
EUROSENSORS XXVII), IEEE. 2013;1206-1209. doi: 10.1016/j.bprint.2020.e00108
doi: 10.1109/TRANSDUCERS.2013.6626990
197. Serex L, Bertsch A, Renaud P. Microfluidics: A new layer
186. Abelseth E, Abelseth L, De La Vega L, Beyer ST, Wadsworth of control for extrusion-based 3D printing. Micromachines.
SJ, Willerth SM. 3D printing of neural tissues derived from 2018;9(2):86.
human induced pluripotent stem cells using a fibrin-based doi: 10.3390/mi9020086
bioink. ACS Biomater Sci Eng. 2019;5(1):234-243.
doi: 10.1021/acsbiomaterials.8b01235 198. Serex L, Sharma K, Rizov V, Bertsch A, McKinney JD,
Renaud P. Microfluidic-assisted bioprinting of tissues
187. Mirani B, Stefanek E, Godau B, Hossein Dabiri SM, Akbari
M. Microfluidic 3D printing of a photo-cross-linkable and organoids at high cell concentrations. Biofabrication.
bioink using insights from computational modeling. ACS 2021;13(12).
Biomater Sci Eng. 2021;7(7):3269-3280. doi: 10.1088/1758-5090/abca80
doi: 10.1021/acsbiomaterials.1c00084 199. Lee KG, Park KJ, Seok S, et al. 3D printed modules for
188. Akbari M, Khademhosseini A. Tissue bioprinting for integrated microfluidic devices. RSC Adv. 2014;4(62):
biology and medicine. Cell. 2022;185(15):2644-2648. 32876-32880.
doi: 10.1016/j.cell.2022.06.015 doi: 10.1039/c4ra05072j
189. Beyer ST, Mohamed T, Walus K. A microfluidics based 200. Bhargava KC, Thompson B, Malmstadt N. Discrete
3D bioprinter with on-the-fly multimaterial switching elements for 3D microfluidics. Proc Natl Acad Sci USA.
capability. 17th Int Conf Miniaturized Syst Chem Life Sci 2014;111(42):15013-15018.
MicroTAS. 2013;1(October):176-178. doi: 10.1073/pnas.1414764111
190. Perez MR, Sharma R, Masri NZ. 3D bioprinting 201. Vittayarukskul K, Lee AP. A truly Lego®-like modular
mesenchymal stem cell-derived neural tissues using a fibrin- microfluidics platform. J MicromechMicroeng. 2017;
based bioink. Biomolecules. 2021;11(1250):1-15. 27(3):35004.
doi: 10.3390/biom11081250 doi: 10.1088/1361-6439/aa53ed
191. Lee C, Abelseth E, de la Vega L, Willerth SM. Bioprinting a 202. Yuen PK. A reconfigurable stick-n-play modular
novel glioblastoma tumor model using a fibrin-based bioink microfluidic system using magnetic interconnects. Lab Chip.
for drug screening. Mater Today Chem. 2019;12:78-84. 2016;16(19):3700-3707.
doi: 10.1016/j.mtchem.2018.12.005 doi: 10.1039/c6lc00741d
192. Smits IPM, Blaschuk OW, Willerth SM. Novel N-cadherin 203. Chae S, Kang E, Khademhosseini A, Lee SH. Micro/
antagonist causes glioblastoma cell death in a 3D bioprinted nanometer-scale fiber with highly ordered structures by
co-culture model. Biochem Biophys Res Commun. mimicking the spinning process of silkworm. Adv Mater.
2020;529(2):162-168. 2013;25(22):3071-3078.
doi: 10.1016/j.bbrc.2020.06.001 doi: 10.1002/adma.201300837
Volume 10 Issue 1 (2024) 73 https://doi.org/10.36922/ijb.1404

