Page 81 - IJB-10-1
P. 81

International Journal of Bioprinting                                     Microfluidic-assisted 3D bioprinting




               gradients of GelMA hydrogels using a 3D printed   193. Sharma R, Smits IPM, De La Vega L, Lee C, Willerth SM. 3D
               micromixer. Macromol Biosci. 2020;20(7):e2000107.  bioprinting pluripotent stem cell derived neural tissues using
               doi: 10.1002/mabi.202000107                        a novel fibrin bioink containing drug releasing microspheres.
            183. Kuzucu M, Vera G, Beaumont M, et al.  Extrusion-based   Front Bioeng Biotechnol. 2020;8(February):1-12.
               3D bioprinting of gradients of stiff ness, cell density, and      doi: 10.3389/fbioe.2020.00057
               immobilized  peptide  using  thermogelling  hydrogels.  ACS   194. Sharma R, Kirsch R, Valente KP, Perez MR, Willerth
               Biomater Sci Eng. 2021;7:2192-2197.                SM.  Physical and mechanical characterization of fibrin-
               doi: 10.1021/acsbiomaterials.1c00183               based bioprinted constructs containing drug-releasing
            184. Attalla R, Puersten E, Jain N, Selvaganapathy PR.  3D   microspheres  for  neural  tissue  engineering  applications.
               bioprinting of  heterogeneous  bi-  and  tri-layered  hollow   Processes. 2021;9(7):1205.
               channels within gel scaffolds using scalable multi-     doi: 10.3390/pr9071205
               axial microfluidic extrusion nozzle.  Biofabrication.   195. Dickman CTD, Russo V, Thain K, et al. Functional
               2019;11(1):015012.                                 characterization  of 3D  contractile  smooth  muscle  tissues
               doi: 10.1088/1758-5090/aaf7c7                      generated using a  unique  microfluidic  3D  bioprinting
            185. Beyer ST, Bsoul A, Ahmadi A. 3D alginate constructs for   technology. FASEB J, 2020;34(1):1652-1664.
               tissue engineering printed using a coaxial flow focusing      doi: 10.1096/fj.201901063RR
               microfluidic device. In:  2013 Transducers & Eurosensors   196. Addario G, Djudjaj S, Farè S, Boor P, Moroni L, Mota C.
               XXVII: The 17th International Conference on Solid-State   Microfluidic bioprinting towards a renal in vitro model.
               Sensors, Actuators and Microsystems (TRANSDUCERS  &   Bioprinting. 2020;20(July):e00108.
               EUROSENSORS XXVII), IEEE. 2013;1206-1209.          doi: 10.1016/j.bprint.2020.e00108
               doi: 10.1109/TRANSDUCERS.2013.6626990
                                                               197. Serex L, Bertsch A, Renaud P. Microfluidics: A new layer
            186. Abelseth E, Abelseth L, De La Vega L, Beyer ST, Wadsworth   of control for extrusion-based 3D printing. Micromachines.
               SJ, Willerth SM. 3D printing of neural tissues derived from   2018;9(2):86.
               human induced pluripotent stem cells using a fibrin-based      doi: 10.3390/mi9020086
               bioink. ACS Biomater Sci Eng. 2019;5(1):234-243.
               doi: 10.1021/acsbiomaterials.8b01235            198. Serex L, Sharma K, Rizov V, Bertsch A, McKinney JD,
                                                                  Renaud P.  Microfluidic-assisted bioprinting of tissues
            187. Mirani B, Stefanek E, Godau B, Hossein Dabiri SM, Akbari
               M. Microfluidic 3D printing of a photo-cross-linkable   and  organoids  at  high  cell  concentrations.  Biofabrication.
               bioink using insights from computational modeling.  ACS   2021;13(12).
               Biomater Sci Eng. 2021;7(7):3269-3280.             doi: 10.1088/1758-5090/abca80
               doi: 10.1021/acsbiomaterials.1c00084            199. Lee  KG,  Park  KJ,  Seok  S,  et  al.  3D  printed  modules  for
            188. Akbari M, Khademhosseini A. Tissue bioprinting for   integrated microfluidic devices.  RSC Adv.  2014;4(62):
               biology and medicine. Cell. 2022;185(15):2644-2648.   32876-32880.
               doi: 10.1016/j.cell.2022.06.015                    doi: 10.1039/c4ra05072j
            189. Beyer ST, Mohamed T, Walus K. A microfluidics based   200. Bhargava KC, Thompson B, Malmstadt N. Discrete
               3D bioprinter with on-the-fly multimaterial switching   elements for 3D microfluidics.  Proc Natl Acad Sci USA.
               capability.  17th Int Conf Miniaturized Syst Chem Life Sci   2014;111(42):15013-15018.
               MicroTAS. 2013;1(October):176-178.                 doi: 10.1073/pnas.1414764111
            190. Perez MR, Sharma R, Masri NZ. 3D bioprinting   201. Vittayarukskul K, Lee AP. A truly Lego®-like modular
               mesenchymal stem cell-derived neural tissues using a fibrin-  microfluidics platform.  J MicromechMicroeng.  2017;
               based bioink. Biomolecules. 2021;11(1250):1-15.    27(3):35004.
               doi: 10.3390/biom11081250                          doi: 10.1088/1361-6439/aa53ed
            191. Lee C, Abelseth E, de la Vega L, Willerth SM. Bioprinting a   202. Yuen PK. A reconfigurable stick-n-play modular
               novel glioblastoma tumor model using a fibrin-based bioink   microfluidic system using magnetic interconnects. Lab Chip.
               for drug screening. Mater Today Chem. 2019;12:78-84.  2016;16(19):3700-3707.
               doi: 10.1016/j.mtchem.2018.12.005                  doi: 10.1039/c6lc00741d
            192. Smits IPM, Blaschuk OW, Willerth SM. Novel N-cadherin   203. Chae  S,  Kang  E,  Khademhosseini  A,  Lee  SH.  Micro/
               antagonist causes glioblastoma cell death in a 3D bioprinted   nanometer-scale fiber with highly ordered structures by
               co-culture model.  Biochem Biophys Res Commun.     mimicking the spinning process of silkworm.  Adv Mater.
               2020;529(2):162-168.                               2013;25(22):3071-3078.
               doi: 10.1016/j.bbrc.2020.06.001                    doi: 10.1002/adma.201300837




            Volume 10 Issue 1 (2024)                        73                          https://doi.org/10.36922/ijb.1404
   76   77   78   79   80   81   82   83   84   85   86